Abstract

High birefringence induced by elliptical air hole photonic crystal fibers (EHPCFs) is analyzed numerically using the finite-element method. Statistical correlations between the birefringence and the various parameters are obtained. We found that the complex elliptical air hole is better than that of a circular one to obtain high birefringence in photonic crystal fibers. Our suggested structures can considerably enhance the birefringence in EHPCFs and show that the birefringence can be as high as 1.1294×102, which is higher than the birefringence obtained from conventional step-index fiber (5 × 10−4), circular air holes PCF (3.7×103), and elliptical hollow PCF (2.35 × 10−3).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. A. M. Zheltikov, "Holey fibers," Phys. Usp. 170, 1203-1215 (2000).
    [CrossRef]
  3. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975).
    [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  5. C. J. S. de Matos and J. R. Taylor, "Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier," Opt. Express 12, 405-409 (2004).
    [CrossRef] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  7. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
    [CrossRef]
  8. M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).
    [CrossRef]
  9. K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
    [CrossRef]
  10. A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13, 6194-6201 (2005).
    [CrossRef]
  11. R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
    [CrossRef]
  12. M. Nakazawa, "Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett. 46, 628-630 (1985).
    [CrossRef]
  13. R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
    [CrossRef]
  14. Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
    [CrossRef] [PubMed]
  15. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
    [CrossRef]
  16. K. Saitoh, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).
    [CrossRef]
  17. L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
    [CrossRef]
  18. I. K. Hwang and Y. H. Lee, "High birefringence in elliptical hollow optical fiber," Opt. Express 12, 1916-1923 (2004).
    [CrossRef] [PubMed]
  19. X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  20. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett. 32, 469-471 (2007).
    [CrossRef] [PubMed]
  21. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
    [CrossRef]
  22. N. A. Issa, M. A. Van-Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
    [CrossRef] [PubMed]
  23. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
    [CrossRef]
  24. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
    [PubMed]
  25. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  26. J. C. Knight, T. A. Birks, P. St. J. Ressel, and D. M. Atkin, "All-sillica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  27. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001).
    [CrossRef]
  28. A. Betourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm," Opt. Express 15, 316-324 (2007).
    [CrossRef] [PubMed]
  29. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, "Versatile control of geometric birefringence in elliptical hollow optical fiber," Opt. Lett. 31, 2681-2683 (2006).
    [CrossRef] [PubMed]
  30. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett. 12, 729-731 (1987).
    [CrossRef] [PubMed]
  31. J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986).
    [CrossRef] [PubMed]
  32. W. V. Sorin, B. Y. Kim, and H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers," Opt. Lett. 11, 581-583 (1986).
    [CrossRef] [PubMed]
  33. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
    [CrossRef] [PubMed]
  34. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
    [CrossRef]
  35. S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable and laser based on two-mode fiber," Opt. Lett. 21, 27-29 (1996).
    [CrossRef] [PubMed]
  36. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers," J. Lightwave Technol. 20, 1864-1868 (2002).
    [CrossRef]
  37. J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
    [CrossRef] [PubMed]
  38. S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
    [CrossRef]
  39. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
    [CrossRef]

2007

2006

2005

A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13, 6194-6201 (2005).
[CrossRef]

2004

2003

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
[PubMed]

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers," J. Lightwave Technol. 20, 1864-1868 (2002).
[CrossRef]

2001

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).
[CrossRef]

L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

2000

1997

1996

1994

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

1990

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

1987

1986

1985

M. Nakazawa, "Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett. 46, 628-630 (1985).
[CrossRef]

1984

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

1981

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

1979

R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

1975

P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Arriaga, J.

Atkin, D. M.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Bergh, R. A.

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

Betourne, A.

Bigot, L.

Birks, T. A.

Blake, J. N.

Bogoni, A.

L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
[CrossRef]

Botten, L. C.

Bouwmans, G.

Brown, T. G.

Claus, R. O.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

Cox, F.

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
[PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Culshaw, B.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

de Matos, C. J. S.

de Sterke, C. M.

Dong, X.

Douay, M.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Engan, H. E.

Fellew, M.

Ferrarini, D.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Han, S. R.

Henry, G.

Hochman, A.

A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13, 6194-6201 (2005).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

Huang, S. Y.

Hwang, I. K.

Issa, N. A.

Jankovic, L.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

Jin, L.

Jung, Y.

Kai, G.

Kim, B. Y.

Kim, S.

Knight, J. C.

Koshiba, M.

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

Large, M. C. J.

Lee, Y. H.

Lefervre, H. C.

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

Leviatan, Y.

A. Hochman and Y. Leviatan, "Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins," Opt. Express 13, 6194-6201 (2005).
[CrossRef]

Li, Y.

Liu, J.

Lu, Y.

Luo, L. W.

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Maillotte, H.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Mangan, B. J.

McIsaac, P. R.

P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975).
[CrossRef]

McPhedran, R. C.

Michie, W. C.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Nakazawa, M.

M. Nakazawa, "Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett. 46, 628-630 (1985).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

Ortigosa-Blanch, A.

Osgood, R. M.

Paek, U. C.

Park, H. S.

Perrin, M.

Poti, L.

L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
[CrossRef]

Provino, L.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Pureur, V.

Quiquempois, Y.

Ressel, P. St. J.

Russell, P. St. J.

Saitoh, K.

K. Saitoh, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).
[CrossRef]

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
[PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Shaw, H. J.

Shum, P.

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Song, K. Y.

Sorin, W. V.

Steel, M. J.

Sun, T.

Taylor, J. R.

Van-Eijkelenborg, M. A.

Vengsarkar, A. M.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
[PubMed]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Wadsworth, W. J.

Wang, Z.

White, T. P.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

Yan, M.

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Yu, X.

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Yuan, S.

Yue, Y.

Yun, S. H.

Zhang, C.

Zheltikov, A. M.

A. M. Zheltikov, "Holey fibers," Phys. Usp. 170, 1203-1215 (2000).
[CrossRef]

Zhu, Z.

Zoboli, M.

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1314-1319 (2002).
[PubMed]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Appl. Phys. Lett.

M. Nakazawa, "Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett. 46, 628-630 (1985).
[CrossRef]

Electron. Lett.

R. B. Dyott, J. R. Cozens, and D. G. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, "Low-loss single polarization fibers with asymmetrical strain birefringence," Electron. Lett. 17, 530-531 (1981).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, "Compact broadband continuum source based on microchip laser pumped microstructured fiber," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Saitoh, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).
[CrossRef]

L. Poti and A. Bogoni, "Experimental demonstration of a PMD compensator with a step control algorithm," IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
[CrossRef]

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

X. Yu, M. Yan, L. W. Luo, and P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical claddrods," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides-I: summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975).
[CrossRef]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).
[CrossRef]

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, "Fiber-optic dual-temperature sensor for simultaneous measurement of strain and temperature," J. Lightwave Technol. 12, 170-177 (1994).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, "All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers," J. Lightwave Technol. 20, 1864-1868 (2002).
[CrossRef]

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

S. Y. Huang, J. N. Blake, and B. Y. Kim, "Perturbation effects on mode propagation in highly elliptical core two-mode fibers," J. Lightwave Technol. 8, 23-33 (1990).
[CrossRef]

Opt. Express

Opt. Lett.

Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Ressel, and D. M. Atkin, "All-sillica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001).
[CrossRef]

N. A. Issa, M. A. Van-Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
[CrossRef] [PubMed]

Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett. 32, 469-471 (2007).
[CrossRef] [PubMed]

Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, "Versatile control of geometric birefringence in elliptical hollow optical fiber," Opt. Lett. 31, 2681-2683 (2006).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett. 12, 729-731 (1987).
[CrossRef] [PubMed]

J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986).
[CrossRef] [PubMed]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers," Opt. Lett. 11, 581-583 (1986).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
[CrossRef] [PubMed]

J. N. Blake, S. Y. Huang, B. Y. Kim, and H. J. Shaw, "Strain effects on highly elliptical core two-mode fibers," Opt. Lett. 12, 732-734 (1987).
[CrossRef] [PubMed]

S. H. Yun, I. K. Hwang, and B. Y. Kim, "All-fiber tunable and laser based on two-mode fiber," Opt. Lett. 21, 27-29 (1996).
[CrossRef] [PubMed]

Opt. Quantum Electron.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
[CrossRef]

Phys. Usp.

A. M. Zheltikov, "Holey fibers," Phys. Usp. 170, 1203-1215 (2000).
[CrossRef]

Science

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

PCF structure. (a) Previous structure (PCF structure designed in Ref. 2) and (b) our proposed EHPCF structure.

Fig. 2
Fig. 2

(Color online) Mode field pattern with parameters, Λ = 1.96 μ m , r 1 = 0.9 μ m , r 2 = 1.084 μ m , r 3 = 0.18 μ m , r 4 = 0.22 μ m , η ( r 1 / r 3 ) = 5 and elliptical ratio r 1 / r 2 = r 3 / r 4 = 0.83 at excitation wavelength λ = 1.55 μ m .

Fig. 3
Fig. 3

(Color online) Birefringence as a function of normalized frequency Λ / λ , whereas the hole spacing Λ = 1.96 μ m , the ratio of large and small air hole η = a / b = r 1 / r 3 = 5.5 .

Fig. 4
Fig. 4

(Color online) Birefringence as a function of the number of rings for λ = 1.55 μ m , Λ = 1.96 μ m , r 1 / r 2 = r 3 / r 4 = 0.83 , η = a / b = r 1 / r 3 = 3 and the number of rings N = 13. Inset: the confinement loss as a function of the number of rings for N = 1–7.

Fig. 5
Fig. 5

Relationship between birefringence and the short axis of small elliptical holes r 3 (varying in the range of [ 0.1 , 0.4 ] μ m with a different short axis of large elliptical holes r 1. The parameters are maintained at Λ = 1.96 μ m , elliptical ratio r 1 / r 2 = r 3 / r 4 = 0.83 and the excitation wavelength λ = 1.55 μ m .

Fig. 6
Fig. 6

Birefringence as a function of the short axis ratio η(r 1r 3) of elliptical hole at different elliptical ratios ( r 1 / r 2 = r 3 / r 4 ) with structure parameters Λ = 1.96 μ m and the excitation wavelength λ = 1.55 μ m .

Fig. 7
Fig. 7

Comparing the birefringence between the previous structure and our proposed structure as a function of the effective area of air holes A / Λ 2 in the cladding region with structure parameters Λ = 1.96 μ m , η ( r 1 / r 3 ) = 5.5 , and the excitation wavelength λ = 1.55 μ m .

Metrics