Abstract

Divergent microlenses and low-spatial-frequency interference gratings have been fabricated in low-cost silicone layers. The size of the microlenses ranges from 1mm to 100μm while spatial frequencies of interference gratings range from 4 to 18  l/mm. The fabrication method involves the recording of spatial distributions of mid-IR light. At recording time silicone layers are in a gel state. Then layers are cured by heat. The final silicone layers are transparent and rigid.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, ed., Micro-optics, Elements, Systems and Applications (Taylor and Francis, 1997).
  2. C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
    [CrossRef]
  3. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, "Ultraviolet-cured polymer microlense array," Appl. Opt. 38, 2991-2996 (1999).
    [CrossRef]
  4. S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, and D. Parriaux, "Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses," Appl. Opt. 38, 6744-6748 (1999).
    [CrossRef]
  5. 〈http://NANOtechweb.org/articles/news/5/2/10/1〉, "IBM beats optical lithography limits," 22 February 2006.
  6. T. P. Sosnowsky and H. Kogelnik, "Ultraviolet hologram recording in dichromated gelatin," Appl. Opt. 9, 2186-2187 (1970).
    [CrossRef]
  7. C. Roychoudhury and B. J. Thompson, "Infrared holography with 4-Z emulsion," Opt. Commun. 10, 23-25 (1974).
    [CrossRef]
  8. M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998).
    [CrossRef]
  9. S. Calixto, "Infrared recording with gelatin films," Appl. Opt. 27, 1977-1983 (1988).
    [CrossRef] [PubMed]
  10. J. E. Julia and J. C. Soriano, "On-line monitoring of one-step laser fabrication of micro-optical components," Appl. Opt. 40, 3220-3224 (2001).
    [CrossRef]
  11. S. Calixto, "Silicone microlenses and interferometric gratings," Appl. Opt. 41, 3355-3361 (2002).
    [CrossRef] [PubMed]
  12. S. Kobayashi and K. Kurihara, "Infrared holography with wax and gelatin film," Appl. Phys. Lett. 19, 482-484 (1971).
    [CrossRef]
  13. J. Lewandowski, B. Mongeau, and M. Cormier, "Real-time interferometry using IR holography on oil films," Appl. Opt. 23, 242-243 (1984).
    [CrossRef] [PubMed]
  14. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Belanger, "Plastic recording media for holography at 10.6 μm," Appl. Opt. 16, 1876-1882 (1977).
    [CrossRef] [PubMed]
  15. G. Odian, Principles of Polymerization (Wiley-Interscience, 1991).
  16. Dow Corning Corporation, South Saginaw Road, Midland, Michigan 48686, USA 〈http://www.dowcorning.com〉.
  17. A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, "Light scanner based on a viscoelastic stretchable grating," Opt. Lett. 30, 949-951 (2005).
    [CrossRef] [PubMed]
  18. H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).
  19. G. Da Costa and J. Calatroni, "Transient deformation of liquid surfaces by laser-induced thermocapillarity," Appl. Opt. 18, 233-235 (1979).
    [CrossRef]

2005 (1)

2002 (1)

2001 (1)

2000 (1)

C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

H. P. Herzig, ed., Micro-optics, Elements, Systems and Applications (Taylor and Francis, 1997).

1991 (1)

G. Odian, Principles of Polymerization (Wiley-Interscience, 1991).

1988 (1)

1984 (1)

1979 (1)

1977 (2)

1974 (1)

C. Roychoudhury and B. J. Thompson, "Infrared holography with 4-Z emulsion," Opt. Commun. 10, 23-25 (1974).
[CrossRef]

1971 (1)

S. Kobayashi and K. Kurihara, "Infrared holography with wax and gelatin film," Appl. Phys. Lett. 19, 482-484 (1971).
[CrossRef]

1970 (1)

Akhzar-Mehr, O.

Andrews, M. P.

Beaulieu, R.

Belanger, D.

Blanc, D.

Blanchard, M.

Calatroni, J.

Calixto, S.

Cormier, M.

Croutxe-Barghorn, C.

C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
[CrossRef]

Da Costa, G.

Hayakawa, S.

Herzig, H. P.

H. P. Herzig, ed., Micro-optics, Elements, Systems and Applications (Taylor and Francis, 1997).

Julia, J. E.

Kanai, G.

Karasawa, T.

Kobayashi, S.

S. Kobayashi and K. Kurihara, "Infrared holography with wax and gelatin film," Appl. Phys. Lett. 19, 482-484 (1971).
[CrossRef]

Kogelnik, H.

Komachi, Y.

Kurihara, K.

S. Kobayashi and K. Kurihara, "Infrared holography with wax and gelatin film," Appl. Phys. Lett. 19, 482-484 (1971).
[CrossRef]

Lewandowski, J.

Lougnot, D. J.

C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
[CrossRef]

Mongeau, B.

Mori, M.

Najafi, S. I.

Odian, G.

G. Odian, Principles of Polymerization (Wiley-Interscience, 1991).

Okamoto, T.

Parriaux, D.

Pelissier, S.

Rioux, M.

Roychoudhury, C.

C. Roychoudhury and B. J. Thompson, "Infrared holography with 4-Z emulsion," Opt. Commun. 10, 23-25 (1974).
[CrossRef]

Sato, H.

Seo, I.

Simonov, A. N.

Smith, H. M.

H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).

Soppera, O.

C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
[CrossRef]

Soriano, J. C.

Sosnowsky, T. P.

Thompson, B. J.

C. Roychoudhury and B. J. Thompson, "Infrared holography with 4-Z emulsion," Opt. Commun. 10, 23-25 (1974).
[CrossRef]

Tishchenko, A. V.

Vdovin, G.

Wakaki, M.

Appl. Opt. (10)

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, and D. Belanger, "Plastic recording media for holography at 10.6 μm," Appl. Opt. 16, 1876-1882 (1977).
[CrossRef] [PubMed]

G. Da Costa and J. Calatroni, "Transient deformation of liquid surfaces by laser-induced thermocapillarity," Appl. Opt. 18, 233-235 (1979).
[CrossRef]

J. Lewandowski, B. Mongeau, and M. Cormier, "Real-time interferometry using IR holography on oil films," Appl. Opt. 23, 242-243 (1984).
[CrossRef] [PubMed]

S. Calixto, "Infrared recording with gelatin films," Appl. Opt. 27, 1977-1983 (1988).
[CrossRef] [PubMed]

M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998).
[CrossRef]

T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, "Ultraviolet-cured polymer microlense array," Appl. Opt. 38, 2991-2996 (1999).
[CrossRef]

S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, and D. Parriaux, "Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses," Appl. Opt. 38, 6744-6748 (1999).
[CrossRef]

J. E. Julia and J. C. Soriano, "On-line monitoring of one-step laser fabrication of micro-optical components," Appl. Opt. 40, 3220-3224 (2001).
[CrossRef]

S. Calixto, "Silicone microlenses and interferometric gratings," Appl. Opt. 41, 3355-3361 (2002).
[CrossRef] [PubMed]

T. P. Sosnowsky and H. Kogelnik, "Ultraviolet hologram recording in dichromated gelatin," Appl. Opt. 9, 2186-2187 (1970).
[CrossRef]

Appl. Phys. Lett. (1)

S. Kobayashi and K. Kurihara, "Infrared holography with wax and gelatin film," Appl. Phys. Lett. 19, 482-484 (1971).
[CrossRef]

Appl. Surf. Sci. (1)

C. Croutxe-Barghorn, O. Soppera, and D. J. Lougnot, "Fabrication of microlenses by direct photo-induced crosslinking polymerization," Appl. Surf. Sci. 168, 89-91 (2000).
[CrossRef]

Opt. Commun. (1)

C. Roychoudhury and B. J. Thompson, "Infrared holography with 4-Z emulsion," Opt. Commun. 10, 23-25 (1974).
[CrossRef]

Opt. Lett. (1)

Other (5)

H. P. Herzig, ed., Micro-optics, Elements, Systems and Applications (Taylor and Francis, 1997).

〈http://NANOtechweb.org/articles/news/5/2/10/1〉, "IBM beats optical lithography limits," 22 February 2006.

G. Odian, Principles of Polymerization (Wiley-Interscience, 1991).

Dow Corning Corporation, South Saginaw Road, Midland, Michigan 48686, USA 〈http://www.dowcorning.com〉.

H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical configuration used to record interference gratings.

Fig. 2
Fig. 2

(a) Image of the IR interference pattern given by a pyroelectric camera. A three-dimensional plot of the image can be seen in (b).

Fig. 3
Fig. 3

In the first row the spatial distribution of the IR interference pattern can be seen. Rows 1–5 show surface modulation of five gratings made with different exposure times. Beams' power at recording time was 5   W . Parameter is exposure time.

Fig. 4
Fig. 4

Surface modulation of three gratings made when the power of interfering beams was 10   W . Parameter is exposure time. Notice that graph at the bottom is in a different scale.

Fig. 5
Fig. 5

(a) Diffracted orders given by a fabricated grating when a He–Ne laser illuminated the grating. (b) Diffraction efficiency as a function of exposure time. Parameter is spatial frequency of the interference pattern.

Fig. 6
Fig. 6

Maximum diffraction efficiency as a function of spatial frequency.

Fig. 7
Fig. 7

(a) Image given by an atomic force microscope of a grating with 16.6 l / mm . (b) Profile of the grating show in (a).

Fig. 8
Fig. 8

Diffraction efficiency as a function of exposure time. Parameter is beams' ratio.

Fig. 9
Fig. 9

Diffraction efficiency as a function of exposure time. Parameters are curing time and temperature.

Fig. 10
Fig. 10

Set of divergent lenses made with different exposure times and their profiles. Diameter of lenses is 500   μ m .

Fig. 11
Fig. 11

Behavior of focal distance as a function of exposure time.

Fig. 12
Fig. 12

(a) Microlens array. Each column shows a set of lenses made with a given exposure time. Diameter of bigger lenses is 500   μ m . (b) Images of a triangle given by some lenses. Lenses in some columns do not show images because they have different focal distances.

Metrics