Abstract

The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  2. D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
    [CrossRef]
  3. A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
    [CrossRef]
  4. B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
    [CrossRef]
  5. B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
    [CrossRef]
  6. B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
    [CrossRef]
  7. D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
    [CrossRef] [PubMed]
  8. D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
    [CrossRef]
  9. N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter with compact fiber-optics and digital microelectromechanical system-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
    [CrossRef] [PubMed]
  10. M. A. Arain and N. A. Riza, "Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping," Appl. Opt 45, 2428-2436 (2006).
    [CrossRef] [PubMed]
  11. J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
    [CrossRef]
  12. L. J. Hornbeck, "Digital light processing and MEMS: timely convergence for a bright future," Proc. SPIE 2639, 1-12 (1995).
  13. N. A. Riza and F. N. Ghauri, "Hybrid analog-digital MEMS fiber-optic variable attenuator," IEEE Photon. Technol. Lett. 17, 124-126 (2005).
    [CrossRef]
  14. N. A. Riza and S. Sumriddetchkajorn, "Multi-wavelength 2 × 2 fiber-optic switch structure using mirror array," in Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '99) (IEEE, 1999), Vol. 1, pp. 129-130.
  15. V. Binjrajka, C.-C. Chang, A. W. R. Emmanuel, D. E. Leaird, and A. M. Weiner, "Pulse shaping of incoherent light by use of a liquid crystal modulator array," Opt. Lett. 21, 1756-1758 (1996).
    [CrossRef] [PubMed]
  16. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
    [CrossRef]
  17. J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
    [CrossRef] [PubMed]
  18. J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).
  19. J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.
  20. N. Riza and M. J. Mughal, "Broadband optical equalizer using fault tolerant digital micromirrors," Opt. Express 11, 1559-1565 (2003).
    [CrossRef] [PubMed]
  21. X. Yi and R. A. Minasian, "Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters," IEEE Trans. Microwave Theory Tech. 54, 880-886 (2006).
    [CrossRef]
  22. S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
    [CrossRef]
  23. J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
    [CrossRef]

2006 (7)

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

M. A. Arain and N. A. Riza, "Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping," Appl. Opt 45, 2428-2436 (2006).
[CrossRef] [PubMed]

J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

X. Yi and R. A. Minasian, "Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters," IEEE Trans. Microwave Theory Tech. 54, 880-886 (2006).
[CrossRef]

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

2005 (4)

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

N. A. Riza and F. N. Ghauri, "Hybrid analog-digital MEMS fiber-optic variable attenuator," IEEE Photon. Technol. Lett. 17, 124-126 (2005).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
[CrossRef]

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

2004 (1)

2003 (4)

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
[CrossRef] [PubMed]

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

N. Riza and M. J. Mughal, "Broadband optical equalizer using fault tolerant digital micromirrors," Opt. Express 11, 1559-1565 (2003).
[CrossRef] [PubMed]

1999 (1)

N. A. Riza and S. Sumriddetchkajorn, "Multi-wavelength 2 × 2 fiber-optic switch structure using mirror array," in Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '99) (IEEE, 1999), Vol. 1, pp. 129-130.

1997 (2)

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997).
[CrossRef]

1996 (2)

A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

V. Binjrajka, C.-C. Chang, A. W. R. Emmanuel, D. E. Leaird, and A. M. Weiner, "Pulse shaping of incoherent light by use of a liquid crystal modulator array," Opt. Lett. 21, 1756-1758 (1996).
[CrossRef] [PubMed]

1995 (1)

L. J. Hornbeck, "Digital light processing and MEMS: timely convergence for a bright future," Proc. SPIE 2639, 1-12 (1995).

1994 (1)

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Arain, M. A.

M. A. Arain and N. A. Riza, "Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping," Appl. Opt 45, 2428-2436 (2006).
[CrossRef] [PubMed]

N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter with compact fiber-optics and digital microelectromechanical system-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
[CrossRef] [PubMed]

Bennion, I.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

Binjrajka, V.

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
[CrossRef] [PubMed]

Chang, C.-C.

Chang, Y. M.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

Chazelas, J.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Chung, H.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

Corral, J. L.

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

Davies, P. A.

A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Davis, M. A.

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Dolfi, D.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Dugan, M. A.

Durand, O.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Emmanuel, A. W. R.

Foord, A. P.

A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Garcia-Olcina, R.

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

Ghauri, F. N.

N. A. Riza and F. N. Ghauri, "Hybrid analog-digital MEMS fiber-optic variable attenuator," IEEE Photon. Technol. Lett. 17, 124-126 (2005).
[CrossRef]

Greehalgh, P. A.

A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Gwandu, B. A. L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

Han, Y.-G.

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, "Digital light processing and MEMS: timely convergence for a bright future," Proc. SPIE 2639, 1-12 (1995).

Huignard, J.-P.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Johns, S.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Keefer, C.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Kersey, A. D.

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Kim, C. H.

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

Lara, H.

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Laude, V.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Leaird, D. E.

Lee, J. H.

J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

Lee, S. B.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006).
[CrossRef] [PubMed]

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

Manznedo, M. D.

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

Marti, J.

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
[CrossRef]

Martinez, A.

Minasian, R. A.

X. Yi and R. A. Minasian, "Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters," IEEE Trans. Microwave Theory Tech. 54, 880-886 (2006).
[CrossRef]

Mora, J.

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

Mughal, M. J.

Munoz, P.

Norton, D.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
[CrossRef] [PubMed]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
[CrossRef] [PubMed]

Piqueras, M. A.

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
[CrossRef]

Riza, N.

Riza, N. A.

M. A. Arain and N. A. Riza, "Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping," Appl. Opt 45, 2428-2436 (2006).
[CrossRef] [PubMed]

N. A. Riza and F. N. Ghauri, "Hybrid analog-digital MEMS fiber-optic variable attenuator," IEEE Photon. Technol. Lett. 17, 124-126 (2005).
[CrossRef]

N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter with compact fiber-optics and digital microelectromechanical system-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
[CrossRef] [PubMed]

N. A. Riza and S. Sumriddetchkajorn, "Multi-wavelength 2 × 2 fiber-optic switch structure using mirror array," in Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '99) (IEEE, 1999), Vol. 1, pp. 129-130.

Russell, J. J.

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Sales, S.

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Munoz, "Optical microwave filter based on spectral slicing by use of arrayed waveguide grating," Opt. Lett. 28, 1802-1804 (2003).
[CrossRef] [PubMed]

Sirkis, J.

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Soref, R.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Sumriddetchkajorn, S.

N. A. Riza and S. Sumriddetchkajorn, "Multi-wavelength 2 × 2 fiber-optic switch structure using mirror array," in Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '99) (IEEE, 1999), Vol. 1, pp. 129-130.

Tabourel, J.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

Tull, J. X.

Vidal, B.

B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
[CrossRef]

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

Warren, W. S.

Weiner, A. M.

Williams, J. A. R.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

Yi, X.

X. Yi and R. A. Minasian, "Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters," IEEE Trans. Microwave Theory Tech. 54, 880-886 (2006).
[CrossRef]

Zhang, L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

Zhang, W.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

Appl. Opt (1)

M. A. Arain and N. A. Riza, "Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping," Appl. Opt 45, 2428-2436 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Electron. Lett. (5)

A. P. Foord, P. A. Davies, and P. A. Greehalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, "Photonic microwave filter based on spectrum slicing with reconfiguration capability," Electron. Lett. 41, 1286-1287 (2005).
[CrossRef]

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, "Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fibre," Electron. Lett. 38, 1328-1330 (2003).
[CrossRef]

J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, "Broadband, high power, erbium fiber ASE-based cw supercontinuum source for spectrum-sliced WDM PON applications," Electron. Lett. 42, 67-68 (2006).

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, "Flexibly tunable microwave photonic FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter," Electron. Lett. 41, 812-813 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filtering using high dispersion fiber tie delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

J. Capmany, J. Mora, D. Pastor, and B. Ortega, "High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
[CrossRef]

N. A. Riza and F. N. Ghauri, "Hybrid analog-digital MEMS fiber-optic variable attenuator," IEEE Photon. Technol. Lett. 17, 124-126 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

D. Dolfi, J. Tabourel, O. Durand, V. Laude, J.-P. Huignard, and J. Chazelas, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1472 (1997).
[CrossRef]

X. Yi and R. A. Minasian, "Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters," IEEE Trans. Microwave Theory Tech. 54, 880-886 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

L. J. Hornbeck, "Digital light processing and MEMS: timely convergence for a bright future," Proc. SPIE 2639, 1-12 (1995).

Other (4)

N. A. Riza and S. Sumriddetchkajorn, "Multi-wavelength 2 × 2 fiber-optic switch structure using mirror array," in Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro-Optics Society (LEOS '99) (IEEE, 1999), Vol. 1, pp. 129-130.

B. Vidal, M. A. Piqueras, J. L. Corral, and J. Marti, "Tunable photonic microwave filter based on two parallel Fabry-Perot filters," in Proceedings of International Topical Meeting on Microwave Photonics, 2005 (MWP2005) (IEEE, 2005), pp. 205-208.
[CrossRef]

S. Sales, J. Mora, M. D. Manznedo, R. Garcia-Olcina, J. Capmany, B. Ortega, and D. Pastor, "Experimental demonstration of the continuous tuning of microwave photonic filters by sinusoidal modulation of the filter coefficients," in Proceedings Optical Fiber Communication Conference (OFC2006), Anaheim Calif., March 2006, Paper JThB22.
[CrossRef]

J. J. Russell, M. A. Davis, J. Sirkis, A. D. Kersey, and H. Lara, "Adaptive-filter-based Bragg grating demodulator," in Proceedings of the 16th International Conference on Optical Fiber Sensors, Nara Japan (IEICE, 2003), paper Th1-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic for our proposed reconfigurable microwave photonic filter architecture.

Fig. 2
Fig. 2

(a) Measured optical spectrum of the erbium fiber ASE-based supercontinuum source. (b) Measured dispersion profile of a 670 m long dispersion compensation fiber (DCF) used in the experimental architecture in Fig. 1.

Fig. 3
Fig. 3

Example optical spectrum with N virtually divided wavelength components although only 15 wavelength channels exist.

Fig. 4
Fig. 4

(a) Measured multiwavelength output spectral patterns with various channel numbers (5, 15, 20, and 45), and (b) their corresponding rf frequency responses.

Fig. 5
Fig. 5

(a) Bandwidth change of 3 dB of the first-order resonance peak, and (b) Q-factor variation of the implemented microwave photonic filter as a function of the number of optical channels.

Fig. 6
Fig. 6

(a) Measured optical spectra of two different multiwavelength spectra with wavelength spacings of 1.65 and 4 .5   nm , respectively. (b) Their corresponding rf frequency responses. (c) Filter resonance rf frequency and 3 dB bandwidth against optical wavelength spacing.

Fig. 7
Fig. 7

Measured optical spectra of the five different apodizing window-imposed multiwavelength patterns and their corresponding rf response curves. (a) Uniform, (b) Gaussian, (c) super-Gaussian, (d) hyperbolic tangent, and (e) Lorentzian shapes.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = n = 0 q 1 a n δ ( t n Δ τ ) ,
I ( λ ) = I 0 i = 0 N 1 M ( λ i ) ,
I ( λ , t ) = I ( λ ) 1 2 [ 1 + m cos ( 2 π f m t ) ] = I 0 i = 0 N 1 M ( λ i ) 1 2 [ 1 + m cos ( 2 π f m t ) ] ,
ψ i ( t τ i ) = M ( λ i ) 1 2 [ 1 + m cos { 2 π f m ( t τ i ) } ] ,
τ i = τ 0 + D λ i + S λ i 2 ,
A ( f m , t ) = R I ( t ) = R I 0 i ψ i ( t τ i ) = R I 0 i M ( λ i )
× 1 2 [ 1 + m cos { 2 π f m ( t τ i ) } ] .
P ( f m ) = Z A a c 2 = Z ( m R I 0 2 ) 2 [ i M ( λ i ) × cos ( 2 π f m ( t τ i ) ) ] 2 ,
FSR = 1 Δ τ .
Q = FSR Δ Ω FWHM .
Δ Ω FWHM 1 N Δ τ = FSR N .

Metrics