Abstract

We report on an experimental result confirming the optimization of the measurement probe of the localized surface plasmon microscope. We introduce axially symmetric radial polarization for this purpose. To generate radially polarized light, we utilize a combined polarizer and liquid crystal cell. We demonstrate the imaging of a pointlike object, and visualize the measurement probe with the profile of a single peak.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).
  2. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
    [CrossRef]
  3. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  4. M. C. Petty, Langmuir-Blodgett Films (Cambridge U. Press, 1996).
  5. B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
    [CrossRef]
  6. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
    [CrossRef]
  7. H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998).
    [CrossRef]
  8. H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
    [CrossRef]
  9. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, "Optical V(z) for high-resolution 2π surface plasmon microscopy," Opt. Lett. 25, 823-825 (2000).
    [CrossRef]
  10. T. Tanaka and Y. Yamamoto, "Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors," Appl. Opt. 42, 4002-4007 (2003).
    [CrossRef] [PubMed]
  11. Q. Zhan, "Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam," Opt. Lett. 31, 1726-1728 (2006).
    [CrossRef] [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  13. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
    [CrossRef] [PubMed]
  14. G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
    [CrossRef]
  15. H. Kano and W. Knoll, "Locally excited surface plasmon polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1998).
    [CrossRef]

2006 (1)

2003 (2)

T. Tanaka and Y. Yamamoto, "Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors," Appl. Opt. 42, 4002-4007 (2003).
[CrossRef] [PubMed]

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

2000 (2)

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, "Optical V(z) for high-resolution 2π surface plasmon microscopy," Opt. Lett. 25, 823-825 (2000).
[CrossRef]

1998 (2)

H. Kano and W. Knoll, "Locally excited surface plasmon polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1998).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998).
[CrossRef]

1996 (2)

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

1988 (2)

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

1983 (1)

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Kano, H.

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, "Excitation of surface-plasmon polaritons by a focused laser beam," J. Opt. Soc. Am. B 15, 1381-1386 (1998).
[CrossRef]

H. Kano and W. Knoll, "Locally excited surface plasmon polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1998).
[CrossRef]

Kawata, S.

Knoll, W.

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

H. Kano and W. Knoll, "Locally excited surface plasmon polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1998).
[CrossRef]

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

Liu, S. G.

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Miyagi, G.

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Miyanaga, N.

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Mizuguchi, S.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

Ohbayashi, K.

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Petty, M. C.

M. C. Petty, Langmuir-Blodgett Films (Cambridge U. Press, 1996).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

Schadt, M.

See, C. W.

Somekh, M. G.

Stalder, M.

Sueda, K.

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Tanaka, T.

Tsubakimoto, K.

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Velinov, T. S.

Yamamoto, Y.

Zhan, Q.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
[CrossRef]

Opt. Commun. (2)

H. Kano and W. Knoll, "A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe," Opt. Commun. 182, 11-15 (2000).
[CrossRef]

H. Kano and W. Knoll, "Locally excited surface plasmon polaritons for thickness measurement of LBK films," Opt. Commun. 153, 235-239 (1998).
[CrossRef]

Opt. Lett. (3)

Rev. Laser Eng. (1)

G. Miyagi, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beam with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Sens. Actuators (2)

C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Other (2)

M. C. Petty, Langmuir-Blodgett Films (Cambridge U. Press, 1996).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical setup to excite the localized surface plasmon.

Fig. 2
Fig. 2

Polarization of the incident light at the entrance pupil: (a) linear polarization and (b) radial polarization.

Fig. 3
Fig. 3

Calculated intensity distributions of the electric-field components produced by the localized surface plasmon on the metal surface. The distributions (a), (b), and (c) represent | E x | 2 , | E y | 2 , and | E z | 2 components for linear polarization, respectively. The graph (d) plots | E z | 2 on the dotted line in the distribution (c). The distributions (e), (f), and (g), and the graph (h) are the corresponding counterparts for radial polarization.

Fig. 4
Fig. 4

Electric-field formation by the plane wave components at the geometric focus: (a) linear polarization and (b) radial polarization. Interference at the focus vanishes the E z component of the electric field in the case of linear polarization, but enhances it in the case of radial polarization.

Fig. 5
Fig. 5

Device to produce radial polarization. The combined polarizer and the normal polarizer produce dissymmetric polarization. The liquid crystal cell, which has concentric rubbing grooves on one side and parallel grooves on the other side, converts from dissymmetric polarization to radial polarization.

Fig. 6
Fig. 6

Experimental setup to confirm the functionality of the liquid crystal cell. The CCD device records the intensity distributions of the transmitted light that passed through the cell and the polarizer. The polarization axis of the polarizer is rotated by the step of 45°.

Fig. 7
Fig. 7

Experimental result for confirming the polarization conversion. The images show distributions of transmission light: (a) without the polarizer and (b) with the polarizer. (c), (d), and (e) with the polarizer rotated by 45°, 90°, and 135°, respectively.

Fig. 8
Fig. 8

Optical system for the experiment. The collimated laser light passing the polarization converting device is focused at the metallic film on a coverslip. The intensity distribution of the reflected light at the exit pupil of the objective lens (Obj) is observed by the CCD device through the half mirror (HM) and the imaging lens (L3). The sample substrate is scanned in two dimensions.

Fig. 9
Fig. 9

Simulated intensity distribution at the exit pupil of the objective lens by assuming the radial polarization for the illumination.

Fig. 10
Fig. 10

Experimentally obtained distributions of the effective refractive index n s produced by a microparticle with (a) linear polarization and (b) radial polarization, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k s p = ω c ( n m 2 n s 2 n m 2 + n s 2 ) 1 / 2 ,

Metrics