Abstract

A portable ellipsometer with a compact static polarimeter using an arrayed polarizer, an arrayed wave plate, and a CCD image sensor is developed. A high level of repeatability at a measurement speed of 0.3 s is demonstrated by measurement of SiO2 films ranging from 2 to 300  nm in thickness deposited on an Si wafer. There is the potential to realize an ultracompact ellipsometer module by integrating the optical source and receiver, suitable for deployment in a variety of manufacturing equipment and measurement instruments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1997).
  2. E. Collett, "Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses," Surf. Sci. 96, 156-167 (1980).
    [CrossRef]
  3. R. M. A. Azzam, "Light polarization: a rich source of information," Opt. Acta 29, 685-689 (1982).
    [CrossRef]
  4. E. Masetti and M. P. de Silva, "Development of a novel ellipsometer based on a four-detector photopolarimeter," Thin Solid Films 246, 47-52 (1994).
    [CrossRef]
  5. A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
    [CrossRef]
  6. Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
    [CrossRef]
  7. T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
    [CrossRef]
  8. S. Kawakami, "Fabrication of submicrometer 3D periodic structures composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
    [CrossRef]
  9. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
    [CrossRef]
  10. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
    [CrossRef]

2006

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

2004

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

2002

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

1999

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

1997

S. Kawakami, "Fabrication of submicrometer 3D periodic structures composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1997).

1994

E. Masetti and M. P. de Silva, "Development of a novel ellipsometer based on a four-detector photopolarimeter," Thin Solid Films 246, 47-52 (1994).
[CrossRef]

1992

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

1982

R. M. A. Azzam, "Light polarization: a rich source of information," Opt. Acta 29, 685-689 (1982).
[CrossRef]

1980

E. Collett, "Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses," Surf. Sci. 96, 156-167 (1980).
[CrossRef]

An, S. H.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1997).

R. M. A. Azzam, "Light polarization: a rich source of information," Opt. Acta 29, 685-689 (1982).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1997).

Collett, E.

E. Collett, "Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses," Surf. Sci. 96, 156-167 (1980).
[CrossRef]

de Silva, M. P.

E. Masetti and M. P. de Silva, "Development of a novel ellipsometer based on a four-detector photopolarimeter," Thin Solid Films 246, 47-52 (1994).
[CrossRef]

Hashimoto, N.

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Kaneko, T.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Kawakami, S.

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

S. Kawakami, "Fabrication of submicrometer 3D periodic structures composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

Kawashima, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Kazama, A.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Khang, Y.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Kim, K. H. P.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Kim, S. J.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Kim, S. Y.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Kim, Y.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Lee, S. M.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Masetti, E.

E. Masetti and M. P. de Silva, "Development of a novel ellipsometer based on a four-detector photopolarimeter," Thin Solid Films 246, 47-52 (1994).
[CrossRef]

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Nagamune, A.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Noh, J.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Ohtera, Y.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Oshige, T.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Sasaki, Y.

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

Sato, T.

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Shin, W.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Suh, D.

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Yamada, T.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Yamada, Y.

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Electron. Lett.

S. Kawakami, "Fabrication of submicrometer 3D periodic structures composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitters," Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

Y. Kim, S. J. Kim, S. Y. Kim, S. H. An, D. Suh, J. Noh, S. M. Lee, K. H. P. Kim, W. Shin, and Y. Khang, "Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry," Jpn. J. Appl. Phys., Part 1 45, 6452-6454 (2006).
[CrossRef]

Opt. Acta

R. M. A. Azzam, "Light polarization: a rich source of information," Opt. Acta 29, 685-689 (1982).
[CrossRef]

Opt. Quantum Electron.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002).
[CrossRef]

Photonics Nanostruct. Fundam. Appl.

T. Sato, Y. Sasaki, N. Hashimoto, and S. Kawakami, "Novel scheme of ellipsometry utilizing parallel processing with arrayed photonic crystal," Photonics Nanostruct. Fundam. Appl. 2, 149-154 (2004).
[CrossRef]

Proc. SPIE

A. Kazama, Y. Yamada, T. Yamada, T. Oshige, T. Kaneko, and A. Nagamune, "Compact and high-speed ellipsometer," Proc. SPIE 1681, 183 (1992).
[CrossRef]

Surf. Sci.

E. Collett, "Determination of the ellipsometric characteristics of optical surfaces using nanosecond laser pulses," Surf. Sci. 96, 156-167 (1980).
[CrossRef]

Thin Solid Films

E. Masetti and M. P. de Silva, "Development of a novel ellipsometer based on a four-detector photopolarimeter," Thin Solid Films 246, 47-52 (1994).
[CrossRef]

Other

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic illustration of the proposed polarimeter for the ellipsometer. For simplicity, the optical axis is shown as a 22.5° step over the range of 180°.

Fig. 2
Fig. 2

Arrayed polarizers and wave plates, which are composed of a two-dimensional periodic structure of submicron period. Arrows indicate the optical axes.

Fig. 3
Fig. 3

(a) A compact polarimeter module, (b) and an arrayed polarizer and arrayed wave plate attached to a CCD image sensor.

Fig. 4
Fig. 4

Images outputted from the CCD sensor on detecting light beams of differing SOPs, (a) ε = 0.018 , γ = 23.8 ° , and (b) ε = 0.353 , γ = 68.8 ° .

Fig. 5
Fig. 5

(a) Relation between measured γ, the principal axis of the polarization ellipsoid, and the azimuthal angle of a polarizer. (b) Relation between the measured ellipticity ε and the azimuthal angle of a quarter wave plate.

Fig. 6
Fig. 6

Ellipsometer utilizing an arrayed polarizer and an arrayed wave plate. The footprint is reduced to A4, and the weight is as low as 4 kg.

Fig. 7
Fig. 7

Simulated trajectories in the ε γ plane as a function of the thickness of SiO 2 film deposited on Si wafer. The angles of incidence for A and B are 60° and 75°, and the incident polarization for A and B are 45° and 10°, respectively. (The wavelength is 655   nm and the refractive index of SiO 2 at 655   nm is 1.456.)

Fig. 8
Fig. 8

Correlation between the thickness measured by the ellipsometer reported here and the exact thickness as measured by a spectroscopic ellipsometer.

Fig. 9
Fig. 9

Repeatability for a sample having a thickness of 126.6   nm and n of 1.463. One hundred measured values obtained at an interval of 0.3 s are plotted. The standard deviation of the thickness and n are as low as 0.04   nm and 3 × 10 4 , respectively.

Fig. 10
Fig. 10

(a) Correlation between thicknesses over the range from 1.6 to 4   nm measured by the ellipsometer reported here and exact thicknesses as measured by a spectroscopic ellipsometer. (b) One hundred measured values obtained at an interval of 0.3 s are plotted. The standard deviation of the thickness is as low as 0.03   nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| u ( ϕ , θ ) | 2 = 1 2 + 1 4 × 1 ε 2 1 + ε 2 ( 1 + cos   α ) × cos ( 2 ϕ 2 γ ) + 1 4 × 1 ε 2 1 + ε 2 ( 1 cos   α ) × cos ( 4 θ 2 ϕ 2 γ ) + ε 1 + ε 2   sin   α   cos ( 2 θ 2 ϕ + π / 2 ) .

Metrics