Abstract

Vacuum-UV radiation from Xe jet-target laser-produced plasmas has been produced, spectrally dispersed, and efficiently focused onto a line-shaped interaction volume by adopting an embedded-in-the-chamber spectrograph geometry. Time-resolved 2D Rayleigh light scattering imaging has been carried out for visualizing the gas jet-laser plasma interaction and optimizing the emission intensity and the spectral resolution. We have calibrated the measured photon fluxes, reaching values higher than 1013photons/pulse  cm2  nm in the 100200  nm wavelength range within the first 20 ns from the laser pulse onset. The vacuum-UV light source is predicted to enable sensitive and selective single-photon ionization for time-of-flight mass spectrometry and similar vacuum-UV spectroscopy applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas (Wiley, 1998).
  2. G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
    [CrossRef]
  3. H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).
  4. N. Xu and V. Majidi, "Wavelength and time-resolved investigation of laser produced plasma as a continuum source," Appl. Spectrosc. 47, 1134-1139 (1993).
    [CrossRef]
  5. A. Borghese and S. S. Merola, "Time-resolved spectra and spatial description of laser induced breakdown in air as a pulsed, bright and broadband ultraviolet light source," Appl. Opt. 37, 3977-3983 (1998).
    [CrossRef]
  6. J. M. Bridges, C. L. Corner, and T. J. McIlrath, "Investigation of a laser-produced plasma VUV light source," Appl. Opt. 25, 2208-2214 (1986).
    [CrossRef] [PubMed]
  7. P. Laporte, N. Damany, and H. Damany, "Pulsed-laser-generated rare-gas plasma as light source in the vacuum-ultraviolet," Opt. Lett. 12, 987-989 (1987).
    [CrossRef] [PubMed]
  8. W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
    [CrossRef]
  9. F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
    [CrossRef] [PubMed]
  10. H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
    [CrossRef] [PubMed]
  11. E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
    [CrossRef]
  12. M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
    [CrossRef]
  13. R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
    [CrossRef]
  14. S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
    [CrossRef]
  15. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
    [CrossRef]
  16. G. Sanna and G. Tomassetti, Introduction to Molecular Beams Gas Dynamics (Imperial College Press, 2005), p. 62.
    [CrossRef]
  17. R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
    [CrossRef]
  18. M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
    [CrossRef]
  19. R. Jung, J. Osterholz, and O. Willi, "Optimization and characterization of supersonic gas jet target for laser-plasma interaction studies," http://www.clf.rl.ac.uk/reports/2004-2005/pdf/16.pdf.
  20. T. M. Di Palma and A. Borghese, "Characterization of a UV-VUV light source based on a gas-target ns-laser-produced plasma," Nucl. Instrum. Methods Phys. Res. B 254, 193-199 (2007).
    [CrossRef]
  21. S. S. Harilal, "Spatial and temporal evolution of argon sparks," Appl. Opt. 43, 3931-3937 (2004).
    [CrossRef] [PubMed]
  22. T. R. Clark and H. M. Milchberg, "Time and space resolved density evolution of the plasma waveguide," Phys. Rev. Lett. 78, 2373-2376 (1997).
    [CrossRef]
  23. G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
    [CrossRef]
  24. R. S. Sigmond, "Ultra-violet pulse response of sodium salicylate," Br. J. Appl. Phys. 17, 1307-1312 (1966).
    [CrossRef]
  25. National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/cgi-bin/AtData/main_asd.

2007 (1)

T. M. Di Palma and A. Borghese, "Characterization of a UV-VUV light source based on a gas-target ns-laser-produced plasma," Nucl. Instrum. Methods Phys. Res. B 254, 193-199 (2007).
[CrossRef]

2006 (1)

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

2005 (2)

G. Sanna and G. Tomassetti, Introduction to Molecular Beams Gas Dynamics (Imperial College Press, 2005), p. 62.
[CrossRef]

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

2004 (2)

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

S. S. Harilal, "Spatial and temporal evolution of argon sparks," Appl. Opt. 43, 3931-3937 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
[CrossRef]

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
[CrossRef]

2001 (3)

R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
[CrossRef] [PubMed]

1999 (2)

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
[CrossRef]

1998 (4)

I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas (Wiley, 1998).

R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
[CrossRef]

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

A. Borghese and S. S. Merola, "Time-resolved spectra and spatial description of laser induced breakdown in air as a pulsed, bright and broadband ultraviolet light source," Appl. Opt. 37, 3977-3983 (1998).
[CrossRef]

1997 (1)

T. R. Clark and H. M. Milchberg, "Time and space resolved density evolution of the plasma waveguide," Phys. Rev. Lett. 78, 2373-2376 (1997).
[CrossRef]

1993 (1)

1987 (2)

P. Laporte, N. Damany, and H. Damany, "Pulsed-laser-generated rare-gas plasma as light source in the vacuum-ultraviolet," Opt. Lett. 12, 987-989 (1987).
[CrossRef] [PubMed]

G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
[CrossRef]

1986 (1)

1966 (1)

R. S. Sigmond, "Ultra-violet pulse response of sodium salicylate," Br. J. Appl. Phys. 17, 1307-1312 (1966).
[CrossRef]

Ahmed, M.

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

Aigner, M.

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

Akinaga, K.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

Allott, R. M.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Baker, G. J.

G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
[CrossRef]

Barth, K. L.

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

Bergmann, K.

G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
[CrossRef]

Bernardez, L.

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

Borghese, A.

T. M. Di Palma and A. Borghese, "Characterization of a UV-VUV light source based on a gas-target ns-laser-produced plasma," Nucl. Instrum. Methods Phys. Res. B 254, 193-199 (2007).
[CrossRef]

A. Borghese and S. S. Merola, "Time-resolved spectra and spatial description of laser induced breakdown in air as a pulsed, bright and broadband ultraviolet light source," Appl. Opt. 37, 3977-3983 (1998).
[CrossRef]

Bridges, J. M.

Brocklehurst, B.

G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
[CrossRef]

Chenoweth, D.

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

Clark, T. R.

T. R. Clark and H. M. Milchberg, "Time and space resolved density evolution of the plasma waveguide," Phys. Rev. Lett. 78, 2373-2376 (1997).
[CrossRef]

Corner, C. L.

Damany, H.

Damany, N.

Dance, J. B.

I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas (Wiley, 1998).

Di Palma, T. M.

T. M. Di Palma and A. Borghese, "Characterization of a UV-VUV light source based on a gas-target ns-laser-produced plasma," Nucl. Instrum. Methods Phys. Res. B 254, 193-199 (2007).
[CrossRef]

Ditmire, T.

R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
[CrossRef]

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Donovan, R.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Folkard, M.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Gloaguen, E.

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

Grotheer, H.-H.

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

Harilal, S. S.

Hay, N.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Hirst, G.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Holton, I. R.

G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
[CrossRef]

Hutchinson, M. H. R.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Jung, R.

R. Jung, J. Osterholz, and O. Willi, "Optimization and characterization of supersonic gas jet target for laser-plasma interaction studies," http://www.clf.rl.ac.uk/reports/2004-2005/pdf/16.pdf.

Kanouff, M.

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

Kettrup, A.

F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
[CrossRef] [PubMed]

Khan, N.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Kim, K. Y.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
[CrossRef]

Kranzusch, S.

S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
[CrossRef]

Kubiak, G.

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

Kumarappan, V.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
[CrossRef]

Laporte, P.

Lebert, R.

G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
[CrossRef]

Ledingham, K.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Leone, S. R.

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

Majidi, V.

Mann, K.

S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
[CrossRef]

Marangos, J. P.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Mason, M. B.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Matsumoto, A.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

McIlrath, T. J.

Merola, S. S.

Milchberg, H. M.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
[CrossRef]

T. R. Clark and H. M. Milchberg, "Time and space resolved density evolution of the plasma waveguide," Phys. Rev. Lett. 78, 2373-2376 (1997).
[CrossRef]

Miles, R. B.

R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Muhlberger, F.

F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
[CrossRef] [PubMed]

Mysak, E. R.

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

Okada, T.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

Osterholz, J.

R. Jung, J. Osterholz, and O. Willi, "Optimization and characterization of supersonic gas jet target for laser-plasma interaction studies," http://www.clf.rl.ac.uk/reports/2004-2005/pdf/16.pdf.

Peth, C.

S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
[CrossRef]

Pokorny, H.

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

Sanna, G.

G. Sanna and G. Tomassetti, Introduction to Molecular Beams Gas Dynamics (Imperial College Press, 2005), p. 62.
[CrossRef]

Shaikh, W.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Shao, Y. L.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Shields, H.

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

Shriever, G.

G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
[CrossRef]

Sigmond, R. S.

R. S. Sigmond, "Ultra-violet pulse response of sodium salicylate," Br. J. Appl. Phys. 17, 1307-1312 (1966).
[CrossRef]

Smith, R. A.

R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
[CrossRef]

Springate, E.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Takahashi, A.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

Tanaka, H.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

Tish, J. W. G.

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
[CrossRef]

Tomassetti, G.

G. Sanna and G. Tomassetti, Introduction to Molecular Beams Gas Dynamics (Imperial College Press, 2005), p. 62.
[CrossRef]

Turcu, I. C. E.

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas (Wiley, 1998).

Willi, O.

R. Jung, J. Osterholz, and O. Willi, "Optimization and characterization of supersonic gas jet target for laser-plasma interaction studies," http://www.clf.rl.ac.uk/reports/2004-2005/pdf/16.pdf.

Wilson, K. R.

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

Xu, N.

Zimmerman, R.

F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
[CrossRef] [PubMed]

Anal. Chem. (1)

F. Muhlberger, R. Zimmerman, and A. Kettrup, "A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk compound of complex gas mixture: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser induced electron impact ionization," Anal. Chem. 73, 3590-3604 (2001).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, "Measurements of the average size and density of clusters in a gas jet," Appl. Phys. Lett. 83, 3210-3213 (2003).
[CrossRef]

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, "Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser produced plasma," Appl. Phys. Lett. 87, 041503 (2005).

Appl. Spectrosc. (1)

Br. J. Appl. Phys. (1)

R. S. Sigmond, "Ultra-violet pulse response of sodium salicylate," Br. J. Appl. Phys. 17, 1307-1312 (1966).
[CrossRef]

Chemosphere (1)

H.-H. Grotheer, H. Pokorny, K. L. Barth, and M. Aigner, "Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames," Chemosphere 57, 1335-1342 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Shaikh, G. Hirst, R. M. Allott, I. C. E. Turcu, M. Folkard, K. Ledingham, R. Donovan, and N. Khan, "A plasma light source for the VUV spectral region," IEEE J. Sel. Top. Quantum Electron. 5, 1522-1525 (1999).
[CrossRef]

Int. J. Mass Spectrum. (1)

E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, and K. R. Wilson, "Investigating the chemical composition of mixed organic-inorganic particles by 'soft' vacuum ultraviolet photoionization: the reaction of ozone with antracene on sodium cloride particles," Int. J. Mass Spectrum. 258, 74-85 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Kanouff, H. Shields, L. Bernardez, D. Chenoweth, and G. Kubiak, "Absorption of extreme ultraviolet light in a laser produced gas-jet plasma source," J. Appl. Phys. 90, 3726-3734 (2001).
[CrossRef]

J. Phys. B (1)

G. J. Baker, B. Brocklehurst, and I. R. Holton, "Time-dependence of sodium salicylate luminescence excited by VUV photons, x-rays and β particles: magnetic field effects," J. Phys. B 20, L305-L310 (1987).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. Shriever, K. Bergmann, and R. Lebert, "Extreme ultraviolet emission of laser-produced plasmas using a cryogenic xenon target," J. Vac. Sci. Technol. B 17, 2058-2060 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, "Laser Rayleigh scattering," Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

T. M. Di Palma and A. Borghese, "Characterization of a UV-VUV light source based on a gas-target ns-laser-produced plasma," Nucl. Instrum. Methods Phys. Res. B 254, 193-199 (2007).
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. A (1)

M. H. R. Hutchinson, T. Ditmire, E. Springate, J. W. G. Tish, Y. L. Shao, M. B. Mason, N. Hay, and J. P. Marangos, "High intensitiy lasers: interaction with atoms, molecules, and clusters," Philos. Trans. R. Soc. London Ser. A 356, 297-315 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

T. R. Clark and H. M. Milchberg, "Time and space resolved density evolution of the plasma waveguide," Phys. Rev. Lett. 78, 2373-2376 (1997).
[CrossRef]

Rev. Sci. Instrum. (2)

R. A. Smith, T. Ditmire, and J. W. G. Tish, "Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments," Rev. Sci. Instrum. 69, 3798-3804 (1998).
[CrossRef]

S. Kranzusch, C. Peth, and K. Mann, "Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas target," Rev. Sci. Instrum. 74, 969-974 (2003).
[CrossRef]

Other (4)

R. Jung, J. Osterholz, and O. Willi, "Optimization and characterization of supersonic gas jet target for laser-plasma interaction studies," http://www.clf.rl.ac.uk/reports/2004-2005/pdf/16.pdf.

G. Sanna and G. Tomassetti, Introduction to Molecular Beams Gas Dynamics (Imperial College Press, 2005), p. 62.
[CrossRef]

National Institute of Standards and Technology Atomic Spectra Database, http://physics.nist.gov/cgi-bin/AtData/main_asd.

I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top view of the experimental setup showing the 200   mm i.d. vacuum chamber equipped with four 90° radial arms. Left arm: Nd:YAG laser input window, focusing f∕5 lens, and diffraction grating; chamber center: LPP on a Xe pulsed jet and scintillator; bottom arm: used for Xe jet and LPP visualization; right arm: used for acquisition of spectra.

Fig. 2
Fig. 2

Superimposed images of the jet and of the plasma, taken separately under the same conditions (see text). Blue z scale (values 0–1): normalized RLS image ( 4   mm × 4   mm ) of clusters in the Xe gas jet (see text), obtained under the conditions given in Section 3. Red z scale (values 1–2): image of the LPP shape and size, normalized to the HM value and acquired with 2 ns exposure time 8 ns after laser onset (for graphic clarity, only values above HM are shown).

Fig. 3
Fig. 3

RLS signals on the jet axis (arbitrary units) as functions of the distance from the nozzle: detected from clusters (thick curve) and expected from atomic gas (thin curve). Also shown (dots) the average number of atoms per cluster (see text). The arrow points to the LPP position, shown in Fig. 2.

Fig. 4
Fig. 4

Transverse size a (solid curve and filled circles, units of μm), axial size b (solid curve and open circles, units of μm), normalized spatially integrated emission intensity I and radiance R (dashed curve) of the LPP as functions of time after laser onset. Conditions as in Fig. 2.

Fig. 5
Fig. 5

Calibrated LPP photon fluxes as functions of wavelength and time: A, Time series of 100 spectra in the first 90 ns from laser onset, each at 1 ns step increasing delays and 1 ns gate width. x scale: wavelength range of 90 210   nm , y scale: delay after laser onset, −10 to +90 ns; z scale (false colors): 0 6 .0 × 10 11 p h o t o n s / n s c m 2 n m : B, VUV photon fluxes integrated over the first 20 ns after laser onset; x scale: wavelength range of 90 210   nm ; y scale: 0 2 .5 × 10 13 photons / pulse   cm 2   nm .

Tables (1)

Tables Icon

Table 1 Photon Fluxes Reported in This Work Compared with Data Available in the Literature Obtained under the Indicated Operating Conditions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n A ( r , θ ) 0.16 n B ( d / r ) 2 cos 3 θ ,
S A ( r , θ ) = k n A ( r , θ ) σ A ,
S C ( r , θ ) = k i n C ( i , r , θ ) σ C ( i , r , θ ) ,
S C / S A = i i x A ( i ) = i ,
P V O L L P P ( x , y ) = C D E T S C I N T ( x , y ) 1 G η P C 1 η S C I N T M R 4 π d Ω M 2 d A ,

Metrics