Abstract

We report the recovery of broadband (6501000  nm) diffuse optical absorption and reduced scattering spectra stratified by layer in a two-layer phantom. The broadband optical properties of the phantom featured top and bottom layers designed to simulate adipose and muscle, respectively. The absolute value and dynamic variation of chromophore concentrations in both layers (top layer thickness greater than 5  mm) were calculated with an average 10% error and 3% error, respectively. In addition to spectra, the algorithm recovers the top layer thickness up to 12  mm within 10% error. It is insensitive to initial guesses of both layers' optical properties as long as the layer thickness initial guess is within ±2  mm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998).
    [CrossRef]
  2. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  3. F. Martelli, S. Bianco, and G. Zaccanti, "Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measurements," Opt. Lett. 28, 1236-1238 (2003).
    [CrossRef] [PubMed]
  4. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, "Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model," Appl. Opt. 40, 3810-3821 (2001).
    [CrossRef]
  5. J. Lee, N. El-Abaddi, A. Duke, A. Cerussi, M. Brenner, and B. Tromberg, "Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy," J. Appl. Physiol. 100, 615-622 (2006).
    [CrossRef]
  6. F. Martelli, S. Del Bianco, and G. Zaccanti, "Effect of the refractive index mismatch on light propagation through diffusive layered media," Phys. Rev. E 70, 011907 (2004).
    [CrossRef]
  7. F. Bevilacqua, A. J. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
    [CrossRef]
  8. T. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Rev. Sci. Instrum. 71, 2500-2513 (2000).
    [CrossRef]
  9. S. Ertefai and A. E. Profio, "Spectral transmittance and contrast in breast diaphanography," Med. Phys. 12, 393-400 (1985).
    [CrossRef] [PubMed]
  10. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, "Frequency-domain method for measuring spectral properties in multiple-scattering media:methemoglobin absorption spectrum in a tissuelike phantom," Appl. Opt. 34, 1143-1155 (1995).
    [CrossRef] [PubMed]
  11. M. Ferrari, L. Mottola, and V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-487 (2004).
    [CrossRef] [PubMed]
  12. A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, "Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy," Opt. Lett. 26, 1963-1965 (2001).
    [CrossRef]
  13. D. Jakubowski, "Development of broadband quantitative tissue optical spectroscopy for the non-invasive characterization of breast disease," Ph.D dissertation (University of California, 2002).

2006

J. Lee, N. El-Abaddi, A. Duke, A. Cerussi, M. Brenner, and B. Tromberg, "Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy," J. Appl. Physiol. 100, 615-622 (2006).
[CrossRef]

2004

F. Martelli, S. Del Bianco, and G. Zaccanti, "Effect of the refractive index mismatch on light propagation through diffusive layered media," Phys. Rev. E 70, 011907 (2004).
[CrossRef]

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-487 (2004).
[CrossRef] [PubMed]

2003

2001

2000

F. Bevilacqua, A. J. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
[CrossRef]

T. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

1998

1995

1985

S. Ertefai and A. E. Profio, "Spectral transmittance and contrast in breast diaphanography," Med. Phys. 12, 393-400 (1985).
[CrossRef] [PubMed]

Appl. Opt.

Can. J. Appl. Physiol.

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-487 (2004).
[CrossRef] [PubMed]

J. Appl. Physiol.

J. Lee, N. El-Abaddi, A. Duke, A. Cerussi, M. Brenner, and B. Tromberg, "Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy," J. Appl. Physiol. 100, 615-622 (2006).
[CrossRef]

Med. Phys.

S. Ertefai and A. E. Profio, "Spectral transmittance and contrast in breast diaphanography," Med. Phys. 12, 393-400 (1985).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E

F. Martelli, S. Del Bianco, and G. Zaccanti, "Effect of the refractive index mismatch on light propagation through diffusive layered media," Phys. Rev. E 70, 011907 (2004).
[CrossRef]

Rev. Sci. Instrum.

T. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Rev. Sci. Instrum. 71, 2500-2513 (2000).
[CrossRef]

Other

D. Jakubowski, "Development of broadband quantitative tissue optical spectroscopy for the non-invasive characterization of breast disease," Ph.D dissertation (University of California, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the two-layer system and the measurement setup. The two banana patterns in the plot illustrate the approximate probing volume of DOS given certain DS separation. S is the source. ρ s indicates the detector position.

Fig. 2
Fig. 2

Recovered broadband absorption spectra of our two-layer phantom measured at various SD separations from a typical homogeneous algorithm.

Fig. 3
Fig. 3

Broadband reduced scattering and absorption spectra from our two-layer fit. The dashed curves in (a) and (c) represent true broadband reduced scattering spectra for top and bottom layers, respectively. The solid curves represent recovered reduced scattering spectra for top and bottom layers, respectively. The solid curves in (b) and (d) represent recovered absorption spectra for top and bottom layers, respectively. Dotted curves in (b) and (d) represent true absorption spectra of top and bottom layers, respectively.

Fig. 4
Fig. 4

True relative changes of batches 2, 3, and 4 are 33%, 67%, and 100%. Two-layer fit changes are 29%, 69%, and 97%. Homogeneous fit changes are 5%, 24%, and 65%.

Tables (1)

Tables Icon

Table 1 Four Chromophore Component Concentrations in the Phantom Are Recovered Using a Homogeneous Model at Different SD Pairs

Equations (70)

Equations on this page are rendered with MathJax. Learn more.

( 650 1000   nm )
5   mm
12   mm
± 2   mm
5
15   mm
5 13   mm
850   nm
( 650 1000   nm )
( 0.5   GHz )
400 μ m
500   MHz
650 998   nm
μ a 1
μ s 1
μ a 2
μ s 2
± 2   mm
± 2   mm
( ρ s )
( ρ s + 6   mm )
( ρ s )
6   mm
( ρ s + 3   mm )
( ρ s + 9   mm )
( ρ L )
( ρ L 6   mm )
( ρ L )
( 30 40   dB )
( ρ L 3   mm )
( ρ L 9   mm )
( mm 1 )
μ s = A λ SP
650 1000   nm
15 20   min
920   nm
915   nm
6   mm
1000   nm
760   nm
( n 1.43 )
( n 1.33 )
( 650   nm )
( 970   nm + )
20   mm
0.04 μ L / mL
0.05 μ L / mL
5.63 μ M
5.54 μ M
5.8   mm
( 6   mm )
8.32 μ M
10 %
70 %
5.5   mm
( μ a 1 )
0.012 mm 1
μ s 1
0.6 1.2 mm 1
( μ a 2 )
0.006 0 . 0 15 mm 1
μ s 2
0.5 1.2 mm 1
± 2   mm
± 2   mm
3 4   mm
1 / μ s
1 / μ s
3 4   mm
ρ s

Metrics