Abstract

Monitoring of blood oxygenation, in particular, cerebral venous oxygenation, is necessary for management of a variety of life-threatening conditions. An optoacoustic technique can be used for noninvasive monitoring of blood oxygenation in blood vessels, including large veins. We calculated optoacoustic signals from a cylinder mimicking a blood vessel using a modified Monte Carlo code and analyzed their temporal profiles. The rate of decrease of the integrated optoacoustic signal at different wavelengths of incident near-infrared radiation was related to the effective attenuation coefficient of normally oxygenated venous blood. We obtained good correlation of this parameter with the blood effective attenuation coefficient in a wide spectral range that may be useful in providing an accurate and robust optoacoustic monitoring of blood oxygenation. We also estimated the accuracy of effective attenuation coefficient calculations.

© 2007 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription