Abstract

Monitoring of blood oxygenation, in particular, cerebral venous oxygenation, is necessary for management of a variety of life-threatening conditions. An optoacoustic technique can be used for noninvasive monitoring of blood oxygenation in blood vessels, including large veins. We calculated optoacoustic signals from a cylinder mimicking a blood vessel using a modified Monte Carlo code and analyzed their temporal profiles. The rate of decrease of the integrated optoacoustic signal at different wavelengths of incident near-infrared radiation was related to the effective attenuation coefficient of normally oxygenated venous blood. We obtained good correlation of this parameter with the blood effective attenuation coefficient in a wide spectral range that may be useful in providing an accurate and robust optoacoustic monitoring of blood oxygenation. We also estimated the accuracy of effective attenuation coefficient calculations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Y. Petrov, I. Y. Petrova, I. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006).
    [CrossRef] [PubMed]
  2. I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from large veins: implication for noninvasive monitoring of cerebral blood oxygenation," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), paper SH64.
  3. Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep," Anesthesiology 102, 69-75 (2005).
    [CrossRef]
  4. T. Sun and G. Diebold, "Generation of ultrasonic waves from a layered photoacoustic source," Nature (London) 355, 806-808 (1992).
    [CrossRef]
  5. G. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).
  6. G. Paltauf and H. Schmidt-Kloiber, "Photoacoustic cavitation in spherical and cylindrical absorbers," Appl. Phys. A 68, 525-531 (1999).
    [CrossRef]
  7. S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995).
  8. L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  9. J. K. Barton, T. J. Pfefer, A. J. Welch, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, "Optical Monte Carlo modeling of a true port wine stain anatomy," Opt. Express 2, 391-396 (1998).
    [CrossRef] [PubMed]
  10. L. Wang and G. Liang, "Absorption distribution of an optical beam focused into a turbid medium," Appl. Opt. 38, 4951-4958 (1999).
    [CrossRef]
  11. I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Numerical modeling of light distribution for optoacoustic determination of blood effective attenuation coefficient in radial artery," in Photons Plus Ultrasound: Imaging and Sensing 2006. The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, A. Oraevsky and L. Wang, eds., Proc. SPIE 6086, 60860V (2006).
    [CrossRef]
  12. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 054004 (2005).
    [CrossRef] [PubMed]
  13. W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  14. I. V. Meglinsky and S. J. Matcher, "Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions," Physiol. Meas. 23, 741-753 (2002).
    [CrossRef]
  15. S. Prahl, "Optical absorption of hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin.
  16. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, "In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique," in Proceedings of the 26th International Conference of IEEE EMBS (Institute of Electrical and Electronics Engineers, 2004), pp. 2052-2054.
    [PubMed]
  17. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
    [CrossRef]
  18. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989).
    [CrossRef] [PubMed]
  19. S. A. Goss, R. L. Johnston, and F. Dunn, "Comprehensive compilation of empirical ultrasonic properties of mammalian tissues," J. Acoust. Soc. Am. 64, 423-437 (1978).
    [CrossRef] [PubMed]
  20. S. A. Goss, R. L. Johnston, and F. Dunn, "Compilation of empirical ultrasonic properties of mammalian tissues. II," J. Acoust. Soc. Am. 68, 93-108 (1980).
    [CrossRef] [PubMed]
  21. J. Laufer, C. Edwell, D. Deply, and P. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
    [CrossRef] [PubMed]

2006

I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Numerical modeling of light distribution for optoacoustic determination of blood effective attenuation coefficient in radial artery," in Photons Plus Ultrasound: Imaging and Sensing 2006. The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, A. Oraevsky and L. Wang, eds., Proc. SPIE 6086, 60860V (2006).
[CrossRef]

Y. Y. Petrov, I. Y. Petrova, I. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006).
[CrossRef] [PubMed]

2005

J. Laufer, C. Edwell, D. Deply, and P. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep," Anesthesiology 102, 69-75 (2005).
[CrossRef]

2002

I. V. Meglinsky and S. J. Matcher, "Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions," Physiol. Meas. 23, 741-753 (2002).
[CrossRef]

1999

G. Paltauf and H. Schmidt-Kloiber, "Photoacoustic cavitation in spherical and cylindrical absorbers," Appl. Phys. A 68, 525-531 (1999).
[CrossRef]

L. Wang and G. Liang, "Absorption distribution of an optical beam focused into a turbid medium," Appl. Opt. 38, 4951-4958 (1999).
[CrossRef]

1998

1996

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

1995

L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1994

G. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

1992

T. Sun and G. Diebold, "Generation of ultrasonic waves from a layered photoacoustic source," Nature (London) 355, 806-808 (1992).
[CrossRef]

1990

W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1989

1980

S. A. Goss, R. L. Johnston, and F. Dunn, "Compilation of empirical ultrasonic properties of mammalian tissues. II," J. Acoust. Soc. Am. 68, 93-108 (1980).
[CrossRef] [PubMed]

1978

S. A. Goss, R. L. Johnston, and F. Dunn, "Comprehensive compilation of empirical ultrasonic properties of mammalian tissues," J. Acoust. Soc. Am. 64, 423-437 (1978).
[CrossRef] [PubMed]

Acustica

G. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Anesthesiology

Y. Y. Petrov, D. S. Prough, D. J. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep," Anesthesiology 102, 69-75 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. A

G. Paltauf and H. Schmidt-Kloiber, "Photoacoustic cavitation in spherical and cylindrical absorbers," Appl. Phys. A 68, 525-531 (1999).
[CrossRef]

Comput. Methods Programs Biomed.

L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

J. Acoust. Soc. Am.

S. A. Goss, R. L. Johnston, and F. Dunn, "Comprehensive compilation of empirical ultrasonic properties of mammalian tissues," J. Acoust. Soc. Am. 64, 423-437 (1978).
[CrossRef] [PubMed]

S. A. Goss, R. L. Johnston, and F. Dunn, "Compilation of empirical ultrasonic properties of mammalian tissues. II," J. Acoust. Soc. Am. 68, 93-108 (1980).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 054004 (2005).
[CrossRef] [PubMed]

Nature

T. Sun and G. Diebold, "Generation of ultrasonic waves from a layered photoacoustic source," Nature (London) 355, 806-808 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Laufer, C. Edwell, D. Deply, and P. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

Physiol. Meas.

I. V. Meglinsky and S. J. Matcher, "Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions," Physiol. Meas. 23, 741-753 (2002).
[CrossRef]

Proc. SPIE

I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Numerical modeling of light distribution for optoacoustic determination of blood effective attenuation coefficient in radial artery," in Photons Plus Ultrasound: Imaging and Sensing 2006. The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, A. Oraevsky and L. Wang, eds., Proc. SPIE 6086, 60860V (2006).
[CrossRef]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996).
[CrossRef]

Other

I. Patrikeev, Y. Y. Petrov, I. Y. Petrova, D. S. Prough, and R. O. Esenaliev, "Monte Carlo modeling of optoacoustic signals from large veins: implication for noninvasive monitoring of cerebral blood oxygenation," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), paper SH64.

S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995).

S. Prahl, "Optical absorption of hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin.

Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, "In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique," in Proceedings of the 26th International Conference of IEEE EMBS (Institute of Electrical and Electronics Engineers, 2004), pp. 2052-2054.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Imaging geometry of Monte Carlo modeling: (a) Grid of cells for calculation of absorbed energy. (b) Spherical shells for calculation of velocity potential in backward detection mode for planar geometry with a cylindrical object; the source and the transducer are on the same side. (c) Spherical shells in forward detection mode for planar geometry. Photons launched from the top; arrows in (b) and (c) show transducer location.

Fig. 2
Fig. 2

Monte Carlo modeling of an optoacoustic signal in the forward detection mode for planar geometry and exponential fit of the signal.

Fig. 3
Fig. 3

Monte Carlo modeling of absorbed energy distribution at λ = 805   nm . The cross sections are across the cylinder axis (a) and along it (b). The total energy of launched photons is 100   μJ . The diameter of the irradiation spot is 8   mm .

Fig. 4
Fig. 4

Optoacoustic signals calculated for different levels of blood oxygenation for planar geometry with a cylindrical object in backward detection mode ( λ = 680   nm ) .

Fig. 5
Fig. 5

Integrated optoacoustic signals normalized to the amplitude of their peak for oxygenation of 65% and various wavelengths.

Fig. 6
Fig. 6

Correlation between the effective attenuation coefficient of blood, μ eff , at 65% oxygenation, calculated from our spectra for sheep blood [16] and parameters of the modeled signals. (a) The constant obtained by exponential fitting the signals in the range 5.35 7.35   μs . The solid curve is a polynomial fit ( r 2 = 0.94 , p < 0.001 ) . (b) The rate of decrease derived from the integrated signals. The straight line is a linear fit ( r 2 = 0.99 , p < 0.001 ) .

Fig. 7
Fig. 7

Attenuation coefficient μ eff reconstructed from the integrated optoacoustic signals (dots). The curves are the spectra of μ eff of blood with different oxygenations derived from the experimental data [16].

Fig. 8
Fig. 8

Absolute error of the reconstruction (black bars) and the change in μ eff when oxygenation level changes from 63% to 67% (gray bars).

Fig. 9
Fig. 9

Optoacoustic signals modeled for different lateral displacements of the transducer with respect to the axis of IJV.

Tables (1)

Tables Icon

Table 1 Optical Properties of Blood Model for Oxygenation of 65%

Equations (119)

Equations on this page are rendered with MathJax. Learn more.

( μ eff )
μ eff
1 2   cm
10 22   mm
6 12   mm
12   mm
6   mm
680   nm
1060   nm
n = 1
n = 1.33
μ a = 0.03 cm 1
μ s = 13.75 cm 1
g = 0.8
900 1 0 6 4   nm
μ a
15 g / dL
μ eff
15 g / dL
μ s
μ a
μ eff
μ eff = [ 3 μ a ( μ a + μ s ) ] 1 / 2
( g = 0.99 )
μ s
μ s
μ s
μ s = μ s ( 1 g )
8   mm
10 4
p ( t , r 0 ) = ρ ψ ( t , r 0 ) t ,
r 0
ψ ( t , r 0 ) = Γ 4 π ρ c s 2 t | r r 0 | = c s t W ( r ) d s ,
c s
W ( r )
d s
c s t
r 0
r i
3   cm
1.5   mm / μs
p ( t ) = Γ μ a F 0 exp [ μ eff c s ( t 0 t ) ] .
F 0
t 0
μ a = 5.53 cm 1
μ s = 1126 cm 1
g = 0.99
( 1.5 mm / μs )
2 3.5   μs
( r 2 = 0.9996 , p < 0.001 )
( 1.6 cm 1 )
μ eff
λ = 805   nm
100   μJ
805   nm
2 .5   cm 1
λ = 1020   nm
4 .4   cm 1
λ = 680   nm
1060   nm
λ = 680   nm
6   mm
5   μs
W ( r )
ξ ( cm 1 ) = 1 h HM h M ,
h HM
h M
μ eff
μ eff
8.5 10   μs
r 2 = 0.98 0.99
p < 0.01
( r 2 = 0.94 , p < 0.001 )
( r 2 = 0.99 , p < 0.001 )
μ eff
μ eff
μ eff
μ eff
0.54 cm 1
λ = 680   nm
λ = 950   nm
μ eff
μ eff
± 3.5 %
μ eff
μ eff
μ eff
( ± 2 %
μ eff
( 65 ± 2 ) %
μ eff
μ eff
680   nm
1%
± 1   mm
μ eff
12   mm
6   mm
1060   nm
( r 2 = 0.99 )
μ eff
μ eff
μ eff
μ eff
( ± 2 % )
± 3.5 %
± 1
μ eff
λ = 805   nm
100   μJ
8   mm
( λ = 680   nm )
μ eff
5.35 7.35   μs
( r 2 = 0.94 , p < 0.001 )
( r 2 = 0.99 , p < 0.001 )
μ eff
μ eff
μ eff

Metrics