Abstract

We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38  nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10   kJ with sufficient bandwidth to achieve 120   fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985).
    [CrossRef]
  2. J. P. Zhou, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, "Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti-sapphire," Opt. Lett. 20, 64-66 (1995).
    [CrossRef] [PubMed]
  3. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, "Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers," Appl. Opt. 41, 2923-2929 (2002).
    [CrossRef] [PubMed]
  4. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  5. J. Collier, C. Hernandez-Gomez, I. N. Ross, P. Matousek, C. N. Danson, and J. Walczak, "Evaluation of an ultrabroadband high-gain amplification technique for chirped pulse amplification facilities," Appl. Opt. 38, 7486-7493 (1999).
    [CrossRef]
  6. I. Jovanovic, C. A. Ebbers, and C. P. J. Barty, "Hybrid chirped-pulse amplification," Opt. Lett. 27, 1622-1624 (2002).
    [CrossRef]
  7. M. D. Perry and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science 264, 917-924 (1994).
    [CrossRef] [PubMed]
  8. N. Blanchot, C. Rouyer, C. Sauteret, and A. Migus, "Amplification of sub-100-TW femtosecond pulses by shifted amplifying Nd-glass amplifiers:theory and experiments," Opt. Lett. 20, 395-397 (1995).
    [CrossRef] [PubMed]
  9. R. Danielius, A. Piskarskas, D. Podenas, and A. Varanavicius, "Broad-band Nd glass regenerative amplifier with combined active medium," Opt. Commun. 84, 343-345 (1991).
    [CrossRef]
  10. I. N. Ross, M. Trentelman, and C. N. Danson, "Optimization of a chirped-pulse amplification Nd:glass laser," Appl. Opt. 36, 9348-9358 (1997).
    [CrossRef]
  11. S. E. Stokowski, R. A. Saroyan, and M. J. Weber, "Laser glass Nd-doped glass spectroscopic and physical properties, rev. 2, Vol. 1, 2" (Lawrence Livermore National Laboratory, 1981).
  12. B. R. Judd, "Optical absoption intensities of rare earth ions," Phys. Rev. B 127, 750 (1962).
  13. G. S. Olfelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511 (1962).
  14. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, and S. Hancock, "35 J broadband femtosecond optical parametric chirped pulse amplification system," Opt. Lett. 31, 3665-3667 (2006).
    [CrossRef] [PubMed]
  15. F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006).
    [CrossRef] [PubMed]
  16. I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. Le Blanc, "Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4," Opt. Lett. 30, 1036-1038 (2005).
    [CrossRef] [PubMed]
  17. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, "High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier," App. Phys. B 753-756 (2005).
    [CrossRef]
  18. R. L. Sutherland, LHandbook of Nonlinear Optics (Marcel Dekker, 1996).
  19. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, "Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers," Opt. Lett. 29, 635-637 (2004).
    [CrossRef] [PubMed]
  20. E. W. Gaul, T. Ditmire, M. D. Martinez, S. Douglas, D. Gorski, G. R. Hays, W. Henderson, A. Erlandson, J. Caird, C. Ebbers, I. Jovanovic, and W. Molander, "Design of the Texas Petawatt Laser," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005).
  21. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
    [CrossRef]

2006 (2)

2005 (2)

I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. Le Blanc, "Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4," Opt. Lett. 30, 1036-1038 (2005).
[CrossRef] [PubMed]

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, "High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier," App. Phys. B 753-756 (2005).
[CrossRef]

2004 (2)

2002 (2)

1999 (1)

1997 (2)

I. N. Ross, M. Trentelman, and C. N. Danson, "Optimization of a chirped-pulse amplification Nd:glass laser," Appl. Opt. 36, 9348-9358 (1997).
[CrossRef]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

1995 (2)

1994 (1)

M. D. Perry and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science 264, 917-924 (1994).
[CrossRef] [PubMed]

1991 (1)

R. Danielius, A. Piskarskas, D. Podenas, and A. Varanavicius, "Broad-band Nd glass regenerative amplifier with combined active medium," Opt. Commun. 84, 343-345 (1991).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985).
[CrossRef]

1962 (2)

B. R. Judd, "Optical absoption intensities of rare earth ions," Phys. Rev. B 127, 750 (1962).

G. S. Olfelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511 (1962).

App. Phys. B (1)

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, and F. Krausz, "High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier," App. Phys. B 753-756 (2005).
[CrossRef]

Appl. Opt. (3)

J. Chem. Phys. (1)

G. S. Olfelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511 (1962).

Opt. Commun. (3)

R. Danielius, A. Piskarskas, D. Podenas, and A. Varanavicius, "Broad-band Nd glass regenerative amplifier with combined active medium," Opt. Commun. 84, 343-345 (1991).
[CrossRef]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 55, 447-449 (1985).
[CrossRef]

Opt. Eng. (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Opt. Express (1)

F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. B (1)

B. R. Judd, "Optical absoption intensities of rare earth ions," Phys. Rev. B 127, 750 (1962).

Science (1)

M. D. Perry and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science 264, 917-924 (1994).
[CrossRef] [PubMed]

Other (3)

S. E. Stokowski, R. A. Saroyan, and M. J. Weber, "Laser glass Nd-doped glass spectroscopic and physical properties, rev. 2, Vol. 1, 2" (Lawrence Livermore National Laboratory, 1981).

R. L. Sutherland, LHandbook of Nonlinear Optics (Marcel Dekker, 1996).

E. W. Gaul, T. Ditmire, M. D. Martinez, S. Douglas, D. Gorski, G. R. Hays, W. Henderson, A. Erlandson, J. Caird, C. Ebbers, I. Jovanovic, and W. Molander, "Design of the Texas Petawatt Laser," in Conference on Lasers and Electro-Optics (Optical Society of America, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Stimulated emission cross sections of neodymium-doped laser glasses.

Fig. 2
Fig. 2

Simulated spectral gain narrowing and the conjugate Fourier transform pulsewidths from mixing APG-1 Nd:phosphate glass with either K-824 Nd:silicate or L-65 Nd:aluminate glass. Gain balance factor ( κ ) is set to 0.5 in all graphs:(a) amplified pulse spectra with total gain of 10 1 , (b) Fourier transform pulsewidths for 10 1 , (c) amplified pulse spectra with total gain of 10 4 , (d) Fourier transform pulsewidths for 10 4 , (e) amplified pulse spectra with total gain of 10 8 , and (f) Fourier transform pulsewidths for 10 8 .

Fig. 3
Fig. 3

Fourier transform limit pulsewidths as a function of peak spectral gain order of magnitudes [n from Eq. (2)].

Fig. 4
Fig. 4

(Color online) Conceptual schematic of one of eight beamlines comprising an exawatt laser system.

Tables (1)

Tables Icon

Table 1 Optical Properties of Neodymium-Doped Laser Glasses a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 κ κ = σ phos σ β ln G β ln G phos .
gain = exp { α [ σ phos κ + σ β ( 1 κ ) ] } ,
α = n ln 10 σ phos κ + σ β ( 1 κ ) ,

Metrics