Abstract

The results of a brief investigation of the amplified spontaneous emission and lasing characteristics of Coumarin 540 dye in as many as ten different solvents are reported. It has been found that C 540 dye solutions contained within a rectangular quartz cuvette give laser emission with well resolved equally spaced modes when pumped with a 476nm beam. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the high-gain medium. While the quantum yield remains a decisive factor, a clear correlation between the total width of the emission spectra and the refractive indices of the solvents of the respective samples has been demonstrated. The well-resolved mode structure exhibited by the emission spectra gives clear evidence of the lasing action taking place in the gain medium, and the number of modes enables us to compare the gain of the media in different samples. A detailed discussion of the solvent effect in the lasing characteristics of C540 in different solutions is given.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Costela, I. Garcia-Moreno, and R. Sastre, "Polymeric solid-state dye lasers: recent developments," Phys. Chem. Chem. Phys. 5, 4745-4763 (2003).
    [CrossRef]
  2. M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk, "Dye doped polymers for blue organic dyes," Appl. Phys. Lett. 80, 4486-4488 (2002).
    [CrossRef]
  3. B. F. Howell and M. G. Kuzk, "Lasing action and photodegradation of Disperse Orange 11 dye in liquid solution," Appl. Phys. Lett. 85, 1901-1903 (2004).
    [CrossRef]
  4. A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Supernarrowing mirrorless laser emission in dendrimer-doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
    [CrossRef]
  5. W. Lu, B. Zhong, and D. Ma, "Amplified spontaneous emission and gain from optically pumped films of dye doped polymers," Appl. Opt. 43, 5074-5078 (2004).
    [CrossRef] [PubMed]
  6. F. J. Duarte, L. S. Liao, and K. M. Vaeth, "Coherence characteristics of electrically excited tandem organic light-emitting diodes," Opt. Lett. 30, 3072-3074 (2005).
    [CrossRef] [PubMed]
  7. S. S. Yap, W. O. Siew, T. Y. Tou, and S. W. Ng, "Red-green-blue laser emissions from dye-doped poly(vinyl alcohol) films," Appl. Opt. 41, 1725-1728 (2002).
    [CrossRef] [PubMed]
  8. G. Gu, P. P. Ong, and Q. Li, "Photoluminescence of Coumarin 540 dye confined in mesoporous silica," J. Phys. D 32, 2287-2289 (1999).
    [CrossRef]
  9. F. J. Duarte, L. S. Liao, K. M. Vaeth, and A. M. Miller, "Widely tunable green laser emission using Coumarin 545 tetramethyl dye as the gain medium," J. Optics A 8, 172-174 (2006).
    [CrossRef]
  10. G. Jones II, W. R. Jackson, and C. Choi, "Solvent effects on emission yield and lifetime for coumarin laser dyes," J. Phys. Chem. 89, 294-300 (1985).
    [CrossRef]
  11. A. K. Satpati, M. Kumbhakar, D. K. Maity, and H. Pal, "Photophysical investigations of the solvent polarity effect on the properties of Coumarin-6 dye," Chem. Phys. Lett. 407, 114-118 (2005).
    [CrossRef]
  12. A. Barik, S. Nath, and H. Pal, "Effect of solvent polarity on the photophysical properties of Coumarin-1 dye," J. Chem. Phys. 119, 10202-10208 (2003).
    [CrossRef]
  13. U. S. Raikar, C. G. Renuka, F. Nadaf, and B. G. Mulimani, "Solvent effects on the absorption and fluorescence spectra of Coumarin 6 and 7 molecules," Spectrochim. Acta Part A 65, 673-677 (2006).
    [CrossRef]
  14. H. Pal, S. Nad, and M. Kumbhakar, "Photophysical properties of Coumarin-120, unusual behavior in nonpolar solvents," J. Chem. Phys. 119, 443-452 (2003).
    [CrossRef]
  15. M. A. Haidekker, T. P. Brady, D. Lichlyter, and E. A. Theodorakis, "Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes," Bioorg. Chem. 33, 415-425 (2005).
    [CrossRef] [PubMed]
  16. S. Nad and H. Pal, "Unusual photophysical properties of Coumarin-151," J. Phys. Chem. A 105, 1097-1106 (2001).
    [CrossRef]
  17. S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimers," Appl. Phys. Lett. 80, 7-9 (2002).
    [CrossRef]
  18. S. Gaung He, R. Signorini, and P. N. Prasad, "Two-photon pumped frequency-upconverted blue lasing in coumarin dye solution," Appl. Opt. 37, 5720-5725 (1998).
    [CrossRef]
  19. A. T. R. Williams, S. A. Winfield, and J. N. Miller, "Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer," Analyst (London) 108, 1067-1072 (1983).
    [CrossRef]
  20. D. Madgde, R. Wong, and P. G. Seybold, "Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and Fluorescein in nine solvents," Photochem. Photobiol. 75, 327-334 (2002).
    [CrossRef]
  21. W. Koechner, Solid-State Laser Engineering, Vol. 1 (Springer-Verlag, 1992).

2006

F. J. Duarte, L. S. Liao, K. M. Vaeth, and A. M. Miller, "Widely tunable green laser emission using Coumarin 545 tetramethyl dye as the gain medium," J. Optics A 8, 172-174 (2006).
[CrossRef]

U. S. Raikar, C. G. Renuka, F. Nadaf, and B. G. Mulimani, "Solvent effects on the absorption and fluorescence spectra of Coumarin 6 and 7 molecules," Spectrochim. Acta Part A 65, 673-677 (2006).
[CrossRef]

2005

A. K. Satpati, M. Kumbhakar, D. K. Maity, and H. Pal, "Photophysical investigations of the solvent polarity effect on the properties of Coumarin-6 dye," Chem. Phys. Lett. 407, 114-118 (2005).
[CrossRef]

M. A. Haidekker, T. P. Brady, D. Lichlyter, and E. A. Theodorakis, "Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes," Bioorg. Chem. 33, 415-425 (2005).
[CrossRef] [PubMed]

F. J. Duarte, L. S. Liao, and K. M. Vaeth, "Coherence characteristics of electrically excited tandem organic light-emitting diodes," Opt. Lett. 30, 3072-3074 (2005).
[CrossRef] [PubMed]

2004

B. F. Howell and M. G. Kuzk, "Lasing action and photodegradation of Disperse Orange 11 dye in liquid solution," Appl. Phys. Lett. 85, 1901-1903 (2004).
[CrossRef]

W. Lu, B. Zhong, and D. Ma, "Amplified spontaneous emission and gain from optically pumped films of dye doped polymers," Appl. Opt. 43, 5074-5078 (2004).
[CrossRef] [PubMed]

2003

A. Costela, I. Garcia-Moreno, and R. Sastre, "Polymeric solid-state dye lasers: recent developments," Phys. Chem. Chem. Phys. 5, 4745-4763 (2003).
[CrossRef]

A. Barik, S. Nath, and H. Pal, "Effect of solvent polarity on the photophysical properties of Coumarin-1 dye," J. Chem. Phys. 119, 10202-10208 (2003).
[CrossRef]

H. Pal, S. Nad, and M. Kumbhakar, "Photophysical properties of Coumarin-120, unusual behavior in nonpolar solvents," J. Chem. Phys. 119, 443-452 (2003).
[CrossRef]

2002

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimers," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk, "Dye doped polymers for blue organic dyes," Appl. Phys. Lett. 80, 4486-4488 (2002).
[CrossRef]

S. S. Yap, W. O. Siew, T. Y. Tou, and S. W. Ng, "Red-green-blue laser emissions from dye-doped poly(vinyl alcohol) films," Appl. Opt. 41, 1725-1728 (2002).
[CrossRef] [PubMed]

D. Madgde, R. Wong, and P. G. Seybold, "Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and Fluorescein in nine solvents," Photochem. Photobiol. 75, 327-334 (2002).
[CrossRef]

2001

S. Nad and H. Pal, "Unusual photophysical properties of Coumarin-151," J. Phys. Chem. A 105, 1097-1106 (2001).
[CrossRef]

2000

A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Supernarrowing mirrorless laser emission in dendrimer-doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
[CrossRef]

1999

G. Gu, P. P. Ong, and Q. Li, "Photoluminescence of Coumarin 540 dye confined in mesoporous silica," J. Phys. D 32, 2287-2289 (1999).
[CrossRef]

1998

1985

G. Jones II, W. R. Jackson, and C. Choi, "Solvent effects on emission yield and lifetime for coumarin laser dyes," J. Phys. Chem. 89, 294-300 (1985).
[CrossRef]

1983

A. T. R. Williams, S. A. Winfield, and J. N. Miller, "Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer," Analyst (London) 108, 1067-1072 (1983).
[CrossRef]

Analyst

A. T. R. Williams, S. A. Winfield, and J. N. Miller, "Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer," Analyst (London) 108, 1067-1072 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye doped dendrimers," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk, "Dye doped polymers for blue organic dyes," Appl. Phys. Lett. 80, 4486-4488 (2002).
[CrossRef]

B. F. Howell and M. G. Kuzk, "Lasing action and photodegradation of Disperse Orange 11 dye in liquid solution," Appl. Phys. Lett. 85, 1901-1903 (2004).
[CrossRef]

A. Otomo, S. Yokoyama, T. Nakahama, and S. Mashiko, "Supernarrowing mirrorless laser emission in dendrimer-doped polymer waveguides," Appl. Phys. Lett. 77, 3881-3883 (2000).
[CrossRef]

Bioorg. Chem.

M. A. Haidekker, T. P. Brady, D. Lichlyter, and E. A. Theodorakis, "Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes," Bioorg. Chem. 33, 415-425 (2005).
[CrossRef] [PubMed]

Chem. Phys. Lett.

A. K. Satpati, M. Kumbhakar, D. K. Maity, and H. Pal, "Photophysical investigations of the solvent polarity effect on the properties of Coumarin-6 dye," Chem. Phys. Lett. 407, 114-118 (2005).
[CrossRef]

J. Chem. Phys.

A. Barik, S. Nath, and H. Pal, "Effect of solvent polarity on the photophysical properties of Coumarin-1 dye," J. Chem. Phys. 119, 10202-10208 (2003).
[CrossRef]

H. Pal, S. Nad, and M. Kumbhakar, "Photophysical properties of Coumarin-120, unusual behavior in nonpolar solvents," J. Chem. Phys. 119, 443-452 (2003).
[CrossRef]

J. Optics A

F. J. Duarte, L. S. Liao, K. M. Vaeth, and A. M. Miller, "Widely tunable green laser emission using Coumarin 545 tetramethyl dye as the gain medium," J. Optics A 8, 172-174 (2006).
[CrossRef]

J. Phys. Chem.

G. Jones II, W. R. Jackson, and C. Choi, "Solvent effects on emission yield and lifetime for coumarin laser dyes," J. Phys. Chem. 89, 294-300 (1985).
[CrossRef]

J. Phys. Chem. A

S. Nad and H. Pal, "Unusual photophysical properties of Coumarin-151," J. Phys. Chem. A 105, 1097-1106 (2001).
[CrossRef]

J. Phys. D

G. Gu, P. P. Ong, and Q. Li, "Photoluminescence of Coumarin 540 dye confined in mesoporous silica," J. Phys. D 32, 2287-2289 (1999).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

D. Madgde, R. Wong, and P. G. Seybold, "Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and Fluorescein in nine solvents," Photochem. Photobiol. 75, 327-334 (2002).
[CrossRef]

Phys. Chem. Chem. Phys.

A. Costela, I. Garcia-Moreno, and R. Sastre, "Polymeric solid-state dye lasers: recent developments," Phys. Chem. Chem. Phys. 5, 4745-4763 (2003).
[CrossRef]

Spectrochim. Acta Part A

U. S. Raikar, C. G. Renuka, F. Nadaf, and B. G. Mulimani, "Solvent effects on the absorption and fluorescence spectra of Coumarin 6 and 7 molecules," Spectrochim. Acta Part A 65, 673-677 (2006).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering, Vol. 1 (Springer-Verlag, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Absorption spectra of C 540 solution in (a) toulene, (b) ethanol.

Fig. 2
Fig. 2

Emission spectra of C 540 solution in methanol (a) fluorescence spectrum, (b) ASE.

Fig. 3
Fig. 3

Lasing spectrum of C 540 solution in methanol. Resonant modes with spacing 1.62 nm .

Fig. 4
Fig. 4

Lasing spectra in methanol for two concentrations. (a) 1 × 10 4   M , (b) 8 × 10 4   M .

Fig. 5
Fig. 5

Typical figure showing the variations in the thickness of the bottom and one of the side walls of a cuvette of 1 cm thickness (photograph of the image obtained with microscope attached with a CCD camera).

Fig. 6
Fig. 6

Laser emission spectrum of dye solution in a cuvette of 0.5 cm . Mode spacing 0.92 nm .

Fig. 7
Fig. 7

Laser emission spectrum from C 540 dye solution in ethanol. Mode spacing 1.65 nm .

Fig. 8
Fig. 8

Laser emission spectrum from C 540 dye solution in MEK. Mode spacing 1.75 nm .

Fig. 9
Fig. 9

Laser emission spectrum of dye solution in butyl acetate. Mode spacing 1.69 nm .

Fig. 10
Fig. 10

ASE spectrum of dye solution in toluene.

Fig. 11
Fig. 11

Emission spectrum in methanol (a) C 540, mode spacing 1.65 nm , (b) Rh 6G, mode spacing 2.01 nm .

Tables (1)

Tables Icon

Table 1 Comparison of Polarity, Quantum Yield, Refractive Index, Number of Modes and Reflectivity for Different Solvents

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 [ n L + n ( l 1 + l 2 ) ] = K 1 λ ,
2 n L = K 2 λ ,
2 ( n L + n l 2 ) = K 3 λ ,
2 ( n L + n l 1 ) = K 4 λ ,
2 n ( l 2 l 1 ) = K λ ,
Δ λ = λ 2 2 n ( l 2 l 1 ) ,
R = ( n 1 n 2 n 1 + n 2 ) 2 .

Metrics