Abstract

We report on the observation of various bound states of dispersion-managed (DM) solitons in a passively mode-locked erbium-doped fiber ring laser at near zero net cavity group velocity dispersion (GVD). The generated DM solitons are characterized by their Gaussian-like spectral profile with no sidebands, which is distinct from those of the conventional solitons generated in fiber lasers with large net negative cavity GVD, of the parabolic pulses generated in fiber lasers with positive cavity GVD and negligible gain saturation and bandwidth limiting, and of the gain-guided solitons generated in fiber lasers with large positive cavity GVD. Furthermore, bound states of DM solitons with fixed soliton separations are also observed. We show that these bound solitons can function as a unit to form bound states themselves. Numerical simulations verified our experimental observations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Philips, and V. J. Matsas, "320 fs soliton generation with passively mode-locked Erbium fibre laser," Electron. Lett. 27, 730-732 (1991).
    [CrossRef]
  2. I. N. Duling III, "Subpicosecond all-fibre erbium laser," Electron. Lett. 27, 544-545 (1991).
    [CrossRef]
  3. M. Nakazawa, E. Yoshida, and Y. Kimura, "Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett. 59, 2073-2075 (1991).
    [CrossRef]
  4. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  5. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, "Pulse repetition rates in passive, self starting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1452 (1991).
    [CrossRef]
  6. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, "Observation of bound states of solitons in a passively mode-locked fiber laser," Phys. Rev. A 64, 033814 (2001).
    [CrossRef]
  7. D. Y. Tang, L. M. Zhao, and B. Zhao, "Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction," Appl. Phys. B 80, 239-242 (2005).
    [CrossRef]
  8. D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, "Bound-soliton fiber laser," Phys. Rev. A 66, 033806 (2002).
    [CrossRef]
  9. Ph. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, "Phase-locked soliton pairs in a stretched-pulse fiber laser," Opt. Lett. 27, 966-968 (2002).
    [CrossRef]
  10. Ph. Grelu, J. Béal, and J. M. Soto-Crespo, "Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime," Opt. Express 11, 2238-2243 (2003).
    [CrossRef] [PubMed]
  11. J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, "Quantized separations of phase-locked soliton pairs in fiber lasers," Opt. Lett. 28, 1757-1759 (2003).
    [CrossRef] [PubMed]
  12. B. Ortac, A. Hideur, T. Chartier, M. Brunel, Ph. Grelu, H. Leblond, and F. Sanchez, "Generation of bound states of three ultra-short pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser," IEEE Photon. Technol. Lett. 16, 1274-1276 (2004).
    [CrossRef]
  13. B. Ortac, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006).
    [CrossRef] [PubMed]
  14. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive-pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum. Electron. 31, 591-598 (1995).
    [CrossRef]
  15. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
    [CrossRef] [PubMed]
  16. B. Proctor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654-1656 (1993).
    [CrossRef] [PubMed]
  17. M. L. Dennis and I. N. Duling III, "Intracavity dispersion measurement in modelocked fibre laser," Electron. Lett. 29, 409-411 (1993).
    [CrossRef]
  18. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, "Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion," Electron. Lett. 33, 1726-1727 (1997).
    [CrossRef]
  19. A. Maruta, T. Inoue, Y. Nonaka, and Y. Yoshika, "Bisoliton propagating in dispersion-managed system and its application to high-speed and long-haul optical transmission," IEEE J. Sel. Top. Quantum Electron. 8, 640-650 (2002).
    [CrossRef]

2006 (2)

2005 (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

D. Y. Tang, L. M. Zhao, and B. Zhao, "Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction," Appl. Phys. B 80, 239-242 (2005).
[CrossRef]

2004 (1)

B. Ortac, A. Hideur, T. Chartier, M. Brunel, Ph. Grelu, H. Leblond, and F. Sanchez, "Generation of bound states of three ultra-short pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser," IEEE Photon. Technol. Lett. 16, 1274-1276 (2004).
[CrossRef]

2003 (2)

2002 (3)

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, "Bound-soliton fiber laser," Phys. Rev. A 66, 033806 (2002).
[CrossRef]

Ph. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, "Phase-locked soliton pairs in a stretched-pulse fiber laser," Opt. Lett. 27, 966-968 (2002).
[CrossRef]

A. Maruta, T. Inoue, Y. Nonaka, and Y. Yoshika, "Bisoliton propagating in dispersion-managed system and its application to high-speed and long-haul optical transmission," IEEE J. Sel. Top. Quantum Electron. 8, 640-650 (2002).
[CrossRef]

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, "Observation of bound states of solitons in a passively mode-locked fiber laser," Phys. Rev. A 64, 033814 (2001).
[CrossRef]

1997 (1)

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, "Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion," Electron. Lett. 33, 1726-1727 (1997).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive-pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum. Electron. 31, 591-598 (1995).
[CrossRef]

1993 (2)

1991 (4)

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, "Pulse repetition rates in passive, self starting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1452 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Philips, and V. J. Matsas, "320 fs soliton generation with passively mode-locked Erbium fibre laser," Electron. Lett. 27, 730-732 (1991).
[CrossRef]

I. N. Duling III, "Subpicosecond all-fibre erbium laser," Electron. Lett. 27, 544-545 (1991).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, "Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett. 59, 2073-2075 (1991).
[CrossRef]

Appl. Phys. B (1)

D. Y. Tang, L. M. Zhao, and B. Zhao, "Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction," Appl. Phys. B 80, 239-242 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, "Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett. 59, 2073-2075 (1991).
[CrossRef]

Electron. Lett. (5)

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Philips, and V. J. Matsas, "320 fs soliton generation with passively mode-locked Erbium fibre laser," Electron. Lett. 27, 730-732 (1991).
[CrossRef]

I. N. Duling III, "Subpicosecond all-fibre erbium laser," Electron. Lett. 27, 544-545 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, "Pulse repetition rates in passive, self starting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1452 (1991).
[CrossRef]

M. L. Dennis and I. N. Duling III, "Intracavity dispersion measurement in modelocked fibre laser," Electron. Lett. 29, 409-411 (1993).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, "Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion," Electron. Lett. 33, 1726-1727 (1997).
[CrossRef]

IEEE J. Quantum. Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive-pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum. Electron. 31, 591-598 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Maruta, T. Inoue, Y. Nonaka, and Y. Yoshika, "Bisoliton propagating in dispersion-managed system and its application to high-speed and long-haul optical transmission," IEEE J. Sel. Top. Quantum Electron. 8, 640-650 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Ortac, A. Hideur, T. Chartier, M. Brunel, Ph. Grelu, H. Leblond, and F. Sanchez, "Generation of bound states of three ultra-short pulses with a passively mode-locked high-power Yb-doped double-clad fiber laser," IEEE Photon. Technol. Lett. 16, 1274-1276 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (3)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, "Observation of bound states of solitons in a passively mode-locked fiber laser," Phys. Rev. A 64, 033814 (2001).
[CrossRef]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, "Bound-soliton fiber laser," Phys. Rev. A 66, 033806 (2002).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experiment setup. λ / 4 , quarter-wave plate; λ / 2 , half-wave plate; PI, polarization dependent isolator; P, polarizer; WDM, wavelength-division multiplexer; EDF, erbium-doped fiber.

Fig. 2
Fig. 2

Typical DM soliton. (a) Autocorrelation trace; (b) optical spectrum.

Fig. 3
Fig. 3

Bound state of two DM solitons. (a) Autocorrelation trace; (b) optical spectrum.

Fig. 4
Fig. 4

Other bound states of two DM solitons with different soliton separations of (a) 7.22 ps; (b) 12.30 ps.

Fig. 5
Fig. 5

Multipulse DM solitons (a) three-pulse; (b) four-pulse; (c) five-pulse.

Fig. 6
Fig. 6

Bound states of twin-pulse DM solitons with different soliton separations of (a) 9.37 ps; (b) 8.00 ps.

Fig. 7
Fig. 7

Numerically calculated DM soliton of the laser at g 0 = 510 (a) temporal profile; (b) optical spectrum.

Fig. 8
Fig. 8

Numerically simulated bound state of two DM solitons of the laser at g 0 = 550 (a) temporal profile; (b) optical spectrum.

Fig. 9
Fig. 9

Numerically calculated bound states of twin-pulse DM solitons with different soliton separations of (a) 10 ps; (b) 20 ps.

Metrics