Abstract

A fast tunable filtering technique is proposed associating a diffraction grating with an intracavity Bragg grating. The bandwidth and the tuning range of this filter can be easily adapted by changing the diffraction grating's orientation, or its period, and its response is uniform over the whole tuning range. A numerical simulation of the filter response to a Gaussian beam has been developed, and it fits the experimental results allowing a calculation of the performances that could be obtained with more specific elements. For example, using a commercial acousto-optic deflector would allow a separation of 500 frequencies. It would then be possible to have a tuning range of 100  nm with a bandwidth of 0.2 nm for optical telecommunications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Sadot and E. Boimovich, "Tunable optical filters for dense wdm networks," IEEE Commun. Mag. 36, 50-55 (1998).
    [CrossRef]
  2. M. Fukutoku, K. Oda, and H. Toba, "Wavelength-division-multiplexing add/drop multiplexer employing a novel polarisation independent acousto-optic tunable filter," Electron. Lett. 29, 905-907 (1993).
    [CrossRef]
  3. Y. W. Song, Z. Pan, D. Starodubov, V. Grubsky, E. Salik, S. A. Havstad, Y. Xie, A. E. Willner, and J. Feinberg, "All-fiber wdm optical crossconnect using ultrastrong widely tunable fbgs," IEEE Photon. Technol. Lett. 13, 1103-1105 (2001).
    [CrossRef]
  4. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, "Wavelength add drop switching using tilting micromirrors," J Lightwave Technol. 17, 904-911 (1999).
    [CrossRef]
  5. D. Marom, D. Neilsont, and D. Greywall, "Wavelength-selective 1 × 4 switch for 128 wdm channels at 50 ghz spacing," in Optical Fiber Communication Conference and Exhibit, 2002 (OFC, 2002), pp. FB7-1-FB7-3.
  6. W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, "Dynamic optical filtering in dwdm systems using the dmd," Solid-State Electron. 46, 1583-1585 (2002).
    [CrossRef]
  7. B. Heffner, D. Smith, I. Baran, A. YI-Yan, and K. Cheung, "Integrated-optic acoustically tunable infrared optical filter," Electron. Lett. 24, 1562-1563 (1988).
    [CrossRef]
  8. K. W. Cheung, D. A. Smith, J. E. Baran, and B. L. Heffner, "Multiple channel operation of an integrated acousto-optic," Electron. Lett. 25, 375-376 (1989).
    [CrossRef]
  9. M. S. Borella, "Optical components for wdm lightwave networks," Proc. IEEE 85, 1274-1307 (1997).
    [CrossRef]
  10. D. Ostling and H. Engan, "Spectral flattening by an all-fiber acousto-optic tunable filter," in Proceeding of Ultrasonics Symposium (Seattle, 1995), Vol. 2, pp. 837-840.
  11. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, "Low-loss all-fiber acousto-optic tunable filter," Opt. Lett. 22, 1476-1478 (1997).
    [CrossRef]
  12. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and T. A. Birks, "All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift," IEEE Photon. Technol. Lett. 9, 461-463 (1997).
    [CrossRef]
  13. D. S. Starodubov, V. Grubsky, and J. Feinberg, "All-fiber bandpass filter with adjustable transmission using cladding-mode coupling," IEEE Photon. Technol. Lett. 10, 1590-1592 (1998).
    [CrossRef]
  14. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55 μm inp/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
    [CrossRef]
  15. R. Le Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, "Tunable microcavity based on inp air Bragg mirrors," IEEE J. Sel. Top. Quantum Electron. 5, 111-114 (1999).
    [CrossRef]
  16. P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, "Widely tunable Fabry-Perot filter using ga(al)as alox deformable mirrors," IEEE Photon. Technol. Lett. 10, 394-396 (1998).
    [CrossRef]
  17. J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. J. Langenhan, P. Meissner, and H. L. Hartnagel, "Long resonator micromachined tunable gaas alas Fabry-Perot filter," IEEE Photon. Technol. Lett. 9, 1235-1237 (1997).
    [CrossRef]
  18. J. Daleiden, V. Rangelov, S. Inner, E. Romer, M. Strassner, C. Prott, A. Tarraf, and H. Hillmer, "Record tuning range of inp-based multiple air-gap moems filter," Electron. Lett. 38, 1270-1271 (2002).
    [CrossRef]
  19. M. Strassner, J. C. Esnault, L. Leroy, J.-L. Leclercq, M. Garrigues, and I. Sagnes, "Fabrication of ultrathin and highly flexible inp-based membranes for micro-optoelectromechanical systems at 1.55 μm," IEEE Photon. Technol. Lett. 17, 804-806 (2005).
    [CrossRef]
  20. J. Berger, F. Ilkov, D., King, A. Tselikov, and D. Anthon, "Widely tunable, narrow optical bandpass Gaussian filter using a silicon microactuator," In Optical Fiber Communication Conference (OFC), Postconference Digest (IEEE, 2003), Vol. 86, pp. 252-253.
  21. G. Wilson, C. J. Chen, P. Gooding, and J. E. Ford "Spectral filter with independently variable center wavelength and bandwidth," in 30th ECOC Proceedings, Stockholm, Sweden, September 2004.
  22. W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, "Precision mems flexure mount for a Littman tunable external cavity laser," IEE Proc.: Sci. Meas. Technol. 151, 67-75 (2004).
    [CrossRef]
  23. A. A. Tarasov, H. Chu, and Y. M. Jhon, "Polarization-independent acousto-optically tuned spectral filter with frequency shift compensation," IEEE Photon. Technol. Lett. 14, 944-946 (2002).
    [CrossRef]
  24. E. G. Paek, J. Y. Choe, and T. K. Oh, "Transverse grating-assisted narrow-bandwidth acousto-optic tunable filter," Opt. Lett. 23, 1322-1324 (1998).
    [CrossRef]
  25. L. Menez, I. Zaquine, A. Maruani, and R. Frey, "Intracavity Bragg gratings," J. Opt. Soc. Am. B 16, 1849-1855 (1999).
    [CrossRef]
  26. D. Bitauld, C. Martins, I. Zaquine, A. Maruani, R. Frey, R. Chevallier, and L. Dupont, "Tunable optical filtering with an intracavity bragg grating associated to a standard grating," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (IEEE, 2004), Vol. 2.
  27. D. Bitauld, I. Zaquine, A. Maruani, and R. Frey, "Grating-assisted uniform response high resolution tunable optical filtering using a grating-assisted acousto-optic device," Opt. Express 13, 6438-6444 (2005).
    [CrossRef] [PubMed]
  28. D. Bitauld, L. Menez, I. Zaquine, A. Maruani, and R. Frey, "Diffraction of Gaussian beams on intracavity Bragg gratings," J. Opt. Soc. Am. B 22, 1153-1160 (2005).
    [CrossRef]
  29. Y. Fujii, "High-isolation polarization-independent optical circulator coupled with single-mode fibers," J. Lightwave Technol. 19, 1238-1243 (1991).
    [CrossRef]
  30. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell. Syst. Tech. J. 48, 2909-2947 (1969).
  31. S. Vatoux, Y. Combemale, A. Enard, J. Arnoux, and M. Papuchon, L'optique Guide Monomode (Masson, 1985), pp. 663-710.

2005 (3)

2004 (1)

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, "Precision mems flexure mount for a Littman tunable external cavity laser," IEE Proc.: Sci. Meas. Technol. 151, 67-75 (2004).
[CrossRef]

2002 (3)

A. A. Tarasov, H. Chu, and Y. M. Jhon, "Polarization-independent acousto-optically tuned spectral filter with frequency shift compensation," IEEE Photon. Technol. Lett. 14, 944-946 (2002).
[CrossRef]

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, "Dynamic optical filtering in dwdm systems using the dmd," Solid-State Electron. 46, 1583-1585 (2002).
[CrossRef]

J. Daleiden, V. Rangelov, S. Inner, E. Romer, M. Strassner, C. Prott, A. Tarraf, and H. Hillmer, "Record tuning range of inp-based multiple air-gap moems filter," Electron. Lett. 38, 1270-1271 (2002).
[CrossRef]

2001 (1)

Y. W. Song, Z. Pan, D. Starodubov, V. Grubsky, E. Salik, S. A. Havstad, Y. Xie, A. E. Willner, and J. Feinberg, "All-fiber wdm optical crossconnect using ultrastrong widely tunable fbgs," IEEE Photon. Technol. Lett. 13, 1103-1105 (2001).
[CrossRef]

1999 (3)

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, "Wavelength add drop switching using tilting micromirrors," J Lightwave Technol. 17, 904-911 (1999).
[CrossRef]

R. Le Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, "Tunable microcavity based on inp air Bragg mirrors," IEEE J. Sel. Top. Quantum Electron. 5, 111-114 (1999).
[CrossRef]

L. Menez, I. Zaquine, A. Maruani, and R. Frey, "Intracavity Bragg gratings," J. Opt. Soc. Am. B 16, 1849-1855 (1999).
[CrossRef]

1998 (5)

E. G. Paek, J. Y. Choe, and T. K. Oh, "Transverse grating-assisted narrow-bandwidth acousto-optic tunable filter," Opt. Lett. 23, 1322-1324 (1998).
[CrossRef]

P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, "Widely tunable Fabry-Perot filter using ga(al)as alox deformable mirrors," IEEE Photon. Technol. Lett. 10, 394-396 (1998).
[CrossRef]

D. S. Starodubov, V. Grubsky, and J. Feinberg, "All-fiber bandpass filter with adjustable transmission using cladding-mode coupling," IEEE Photon. Technol. Lett. 10, 1590-1592 (1998).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55 μm inp/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

D. Sadot and E. Boimovich, "Tunable optical filters for dense wdm networks," IEEE Commun. Mag. 36, 50-55 (1998).
[CrossRef]

1997 (4)

M. S. Borella, "Optical components for wdm lightwave networks," Proc. IEEE 85, 1274-1307 (1997).
[CrossRef]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and T. A. Birks, "All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift," IEEE Photon. Technol. Lett. 9, 461-463 (1997).
[CrossRef]

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. J. Langenhan, P. Meissner, and H. L. Hartnagel, "Long resonator micromachined tunable gaas alas Fabry-Perot filter," IEEE Photon. Technol. Lett. 9, 1235-1237 (1997).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, "Low-loss all-fiber acousto-optic tunable filter," Opt. Lett. 22, 1476-1478 (1997).
[CrossRef]

1993 (1)

M. Fukutoku, K. Oda, and H. Toba, "Wavelength-division-multiplexing add/drop multiplexer employing a novel polarisation independent acousto-optic tunable filter," Electron. Lett. 29, 905-907 (1993).
[CrossRef]

1991 (1)

Y. Fujii, "High-isolation polarization-independent optical circulator coupled with single-mode fibers," J. Lightwave Technol. 19, 1238-1243 (1991).
[CrossRef]

1989 (1)

K. W. Cheung, D. A. Smith, J. E. Baran, and B. L. Heffner, "Multiple channel operation of an integrated acousto-optic," Electron. Lett. 25, 375-376 (1989).
[CrossRef]

1988 (1)

B. Heffner, D. Smith, I. Baran, A. YI-Yan, and K. Cheung, "Integrated-optic acoustically tunable infrared optical filter," Electron. Lett. 24, 1562-1563 (1988).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell. Syst. Tech. J. 48, 2909-2947 (1969).

Bell. Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell. Syst. Tech. J. 48, 2909-2947 (1969).

Electron. Lett. (4)

M. Fukutoku, K. Oda, and H. Toba, "Wavelength-division-multiplexing add/drop multiplexer employing a novel polarisation independent acousto-optic tunable filter," Electron. Lett. 29, 905-907 (1993).
[CrossRef]

B. Heffner, D. Smith, I. Baran, A. YI-Yan, and K. Cheung, "Integrated-optic acoustically tunable infrared optical filter," Electron. Lett. 24, 1562-1563 (1988).
[CrossRef]

K. W. Cheung, D. A. Smith, J. E. Baran, and B. L. Heffner, "Multiple channel operation of an integrated acousto-optic," Electron. Lett. 25, 375-376 (1989).
[CrossRef]

J. Daleiden, V. Rangelov, S. Inner, E. Romer, M. Strassner, C. Prott, A. Tarraf, and H. Hillmer, "Record tuning range of inp-based multiple air-gap moems filter," Electron. Lett. 38, 1270-1271 (2002).
[CrossRef]

IEE Proc.: Sci. Meas. Technol. (1)

W. Huang, R. R. A. Syms, J. Stagg, and A. Lohmann, "Precision mems flexure mount for a Littman tunable external cavity laser," IEE Proc.: Sci. Meas. Technol. 151, 67-75 (2004).
[CrossRef]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, "Tunable optical filters for dense wdm networks," IEEE Commun. Mag. 36, 50-55 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Le Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, "Tunable microcavity based on inp air Bragg mirrors," IEEE J. Sel. Top. Quantum Electron. 5, 111-114 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

P. Tayebati, P. D. Wang, D. Vakhshoori, and R. N. Sacks, "Widely tunable Fabry-Perot filter using ga(al)as alox deformable mirrors," IEEE Photon. Technol. Lett. 10, 394-396 (1998).
[CrossRef]

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. J. Langenhan, P. Meissner, and H. L. Hartnagel, "Long resonator micromachined tunable gaas alas Fabry-Perot filter," IEEE Photon. Technol. Lett. 9, 1235-1237 (1997).
[CrossRef]

A. A. Tarasov, H. Chu, and Y. M. Jhon, "Polarization-independent acousto-optically tuned spectral filter with frequency shift compensation," IEEE Photon. Technol. Lett. 14, 944-946 (2002).
[CrossRef]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and T. A. Birks, "All-fiber acoustooptic filter with low-polarization sensitivity and no frequency shift," IEEE Photon. Technol. Lett. 9, 461-463 (1997).
[CrossRef]

D. S. Starodubov, V. Grubsky, and J. Feinberg, "All-fiber bandpass filter with adjustable transmission using cladding-mode coupling," IEEE Photon. Technol. Lett. 10, 1590-1592 (1998).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55 μm inp/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

M. Strassner, J. C. Esnault, L. Leroy, J.-L. Leclercq, M. Garrigues, and I. Sagnes, "Fabrication of ultrathin and highly flexible inp-based membranes for micro-optoelectromechanical systems at 1.55 μm," IEEE Photon. Technol. Lett. 17, 804-806 (2005).
[CrossRef]

Y. W. Song, Z. Pan, D. Starodubov, V. Grubsky, E. Salik, S. A. Havstad, Y. Xie, A. E. Willner, and J. Feinberg, "All-fiber wdm optical crossconnect using ultrastrong widely tunable fbgs," IEEE Photon. Technol. Lett. 13, 1103-1105 (2001).
[CrossRef]

J Lightwave Technol. (1)

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, "Wavelength add drop switching using tilting micromirrors," J Lightwave Technol. 17, 904-911 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Y. Fujii, "High-isolation polarization-independent optical circulator coupled with single-mode fibers," J. Lightwave Technol. 19, 1238-1243 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (1)

M. S. Borella, "Optical components for wdm lightwave networks," Proc. IEEE 85, 1274-1307 (1997).
[CrossRef]

Solid-State Electron. (1)

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, "Dynamic optical filtering in dwdm systems using the dmd," Solid-State Electron. 46, 1583-1585 (2002).
[CrossRef]

Other (6)

J. Berger, F. Ilkov, D., King, A. Tselikov, and D. Anthon, "Widely tunable, narrow optical bandpass Gaussian filter using a silicon microactuator," In Optical Fiber Communication Conference (OFC), Postconference Digest (IEEE, 2003), Vol. 86, pp. 252-253.

G. Wilson, C. J. Chen, P. Gooding, and J. E. Ford "Spectral filter with independently variable center wavelength and bandwidth," in 30th ECOC Proceedings, Stockholm, Sweden, September 2004.

D. Ostling and H. Engan, "Spectral flattening by an all-fiber acousto-optic tunable filter," in Proceeding of Ultrasonics Symposium (Seattle, 1995), Vol. 2, pp. 837-840.

D. Marom, D. Neilsont, and D. Greywall, "Wavelength-selective 1 × 4 switch for 128 wdm channels at 50 ghz spacing," in Optical Fiber Communication Conference and Exhibit, 2002 (OFC, 2002), pp. FB7-1-FB7-3.

S. Vatoux, Y. Combemale, A. Enard, J. Arnoux, and M. Papuchon, L'optique Guide Monomode (Masson, 1985), pp. 663-710.

D. Bitauld, C. Martins, I. Zaquine, A. Maruani, R. Frey, R. Chevallier, and L. Dupont, "Tunable optical filtering with an intracavity bragg grating associated to a standard grating," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (IEEE, 2004), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Filtering principle.

Fig. 2
Fig. 2

Collimation of the beam from the fiber.

Fig. 3
Fig. 3

Reinjection of the light in a fiber.

Fig. 4
Fig. 4

Transmission of the filter as a function of the acoustic frequency for five wavelengths at 760   nm with a space of 0 .43   nm ( 225   GHz exactly). Linear scale on the upper curve and semilogarithmic scale on the lower one.

Fig. 5
Fig. 5

Transmission spectrum of the filter at approximately 1550   nm with a 17   mm wide acousto-optic cell at an acoustic frequency of 170   MHz (left) and 290   MHz (right). The upper plots have a linear scale and the lower ones have a semilogarithmic scale.

Fig. 6
Fig. 6

(Color online) Angles defining the path of the central plane wave from the fiber to the IBG.

Fig. 7
Fig. 7

Angles defining the path of the central plane wave from the IBG back to the fiber.

Tables (2)

Tables Icon

Table 1 Relations Between Wave Vectors Before the Intracavity Bragg Gratings

Tables Icon

Table 2 Relations Between Wave Vectors After the Intracavity Bragg Gratings

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

δ λ = λ / 2 N R ,
Δ λ = λ 2 Δ Λ Λ N B N R ,
N = Δ Λ Λ N B .
R 0 ˜ ( δ k x 0 , δ k y 0 , z 0 ) = 2 P i n w 0 2 c exp [ w 0 2 2 ( δ k x 0 2 + δ k y 0 2 ) ] ,
R I ˜ ( δ k x , δ k y ) = 2 P I w 0 2 c n 0 exp [ w 0 2 2 ( cos ( i 1 ) ( cos ( i 0 ) cos ( θ e ) ) × δ k x ) 2 + δ k y 2 ] .
P o u t = c 2 π | + d x F d y F E F * ( x F , y F ) E M ( x F , y F ) | 2 + d x F d y F | E M ( x F , y F ) | 2 ,
+ d x F d y F | E M ( x F , y F ) | 2 = 1 .
P o u t = c 2 π | + d k 3 x 0 d k 3 y 0 S ˜ 0 ( k 3 x 0 , k 3 y 0 ) M ˜ ( k 3 x 0 , k 3 y 0 ) | 2 ,
P o u t = c 2 π | + ( cos ( i 2 ) cos ( i 3 i 0 ) cos ( i 3 ) cos ( θ e ) d δ k x d δ k y S ˜ D R ( δ k x , δ k y , 0 ) ) × M ( cos ( i 2 ) cos ( i 3 i 0 ) cos ( i 3 ) cos ( θ e ) δ k x k sin ( i 3 i 0 ) , δ k y , 0 ) | 2 .
P = c 2 π x F 2 + y F 2 < r 2 d x F d y F | E F ( x F , y F , 0 ) | 2 .
( k 3 x 0 f k ) 2 + ( k 3 y 0 f k ) 2 < r 2
P = c 2 π 0 2 π d ϕ 0 r k / f ρ d ρ | S ˜ 0 ( ρ cos ϕ , ρ sin ϕ , 0 ) | 2 ,
P = c 2 π 0 2 π d ϕ 0 r k / f ρ d ρ | S ˜ D R ( δ k x , δ k y , 0 ) | 2 ,
δ k x = ( ρ cos ϕ ( 2 π λ 0 ) sin ( i 3 i 0 ) ) cos θ e cos i 3 cos ( i 3 i 0 ) cos i 2 ,
δ k y = ρ sin ϕ .
k i n x ^ k o u t x ^ = 0
( k i n ± K ) x ^ j k o u t x ^ j = 0
δ k x 0 = cos ( i 1 ) cos ( i 0 ) cos ( θ e ) δ k x ,
δ k x 3 = cos ( i 2 ) cos ( θ e ) cos ( i 3 ) δ k x ,
k x 3 = cos ( i 2 ) cos ( i 3 ) cos ( θ e ) δ k x cos ( i 3 i 0 ) + k sin ( i 3 i 0 ) .

Metrics