Abstract

A new concept for a retrodirective tracking system applicable for communication and power transmission is proposed. In the proposed concept, the power transmitter utilizes a receiver's pilot signal to obtain information about its direction by conjugating the signal's phase inside a nonlinear medium. Power is therefore transmitted back to the receiver by the phase-conjugated signal beam. The power can be concentrated by an array of phase conjugators, which provides a large aperture so that the intensity can be increased on the receiver's photovoltaic panels compared to a single element. Controlling the phase and the direction of the readout beams in the four-wave-mixing process provides control over the interference pattern, its position, and its size. A numerical analysis is given for the phase and spot size control, and measurements with two Co-doped SrxBa1xNb2O6 (Co:SBN) crystals confirm the occurrence of interference that is achieved for the case of two beams.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Arnon and N. S. Kopeika, "Laser satellite communication network-vibration effect and possible solutions," Proc. IEEE 85, 1646-1661 (1997).
    [CrossRef]
  2. G. A. Landis, "Applications for space power by laser transmission," Proc. SPIE 2121, 252-255 (1994).
    [CrossRef]
  3. A. Polishuk and S. Arnon, "Communication performance analysis of microsatellites using an optical phased array antenna," Opt. Eng. 42, 2015-2024 (2003).
    [CrossRef]
  4. T. Weyrauch and M. Vorontsov, "Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications," Appl. Opt. 44, 6388-6401 (2005).
    [CrossRef]
  5. C. C. Chen, "Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links," IEEE Trans. Commun. 37, 252-260 (1989).
    [CrossRef]
  6. R. Q. Fugate, "Laser beacon adaptive optics for power beaming applications," Proc. SPIE 2121, 252-255 (1994).
    [CrossRef]
  7. K. Takeda, M. Tanaka, S. Miura, K. Hashimoto, and N. Kawashima, "Laser power transmission for the energy supply to the rover exploring ice on the bottom of the crater in the lunar polar region," Proc. SPIE 4632, 223-227 (2002).
    [CrossRef]
  8. F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, "Wireless power transmission experimentas an early contribution to planetary exploration missions," presented at the 54th International Astronautical Congress in Bremen, Germany, October 2003.
  9. G. Oppenhäuser, "A world first: data transmission between European satellites using laser light," http://www.esa.int/esaCP/ESASGBZ84UC_Improving_2.html.
  10. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelene, "Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communication link," IEEE Trans. Antennas Propag. 53, 842-850 (2005).
    [CrossRef]
  11. E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hard, D. Agren, S. Junique, Q. Wang, and B. Noharet, "Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering," Opt. Eng. 44, 045001 (2005).
    [CrossRef]
  12. R. D. Neal, T. S. McKechnie, and D. R. Neal, "System requirements for laser power beaming to geosynchronous satellites," Proc. SPIE 2121, 252-255 (1994).
    [CrossRef]
  13. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).
  14. L. I. Ivleva, N. V. Bogodaev, P. A. Lykov, V. V. Osiko, and N. M. Polozkov, "Phase conjugation in SBN Crystals," Phys. Lasers 12, 702-706 (2002).
  15. T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, "150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier," Appl. Phys. B 75, 493-495 (2002).
    [CrossRef]
  16. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993), Chap. 2, p. 52, Eq. 2.2-34.
  17. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
    [CrossRef]

2005

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelene, "Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communication link," IEEE Trans. Antennas Propag. 53, 842-850 (2005).
[CrossRef]

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hard, D. Agren, S. Junique, Q. Wang, and B. Noharet, "Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering," Opt. Eng. 44, 045001 (2005).
[CrossRef]

T. Weyrauch and M. Vorontsov, "Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications," Appl. Opt. 44, 6388-6401 (2005).
[CrossRef]

2003

A. Polishuk and S. Arnon, "Communication performance analysis of microsatellites using an optical phased array antenna," Opt. Eng. 42, 2015-2024 (2003).
[CrossRef]

2002

K. Takeda, M. Tanaka, S. Miura, K. Hashimoto, and N. Kawashima, "Laser power transmission for the energy supply to the rover exploring ice on the bottom of the crater in the lunar polar region," Proc. SPIE 4632, 223-227 (2002).
[CrossRef]

L. I. Ivleva, N. V. Bogodaev, P. A. Lykov, V. V. Osiko, and N. M. Polozkov, "Phase conjugation in SBN Crystals," Phys. Lasers 12, 702-706 (2002).

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, "150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier," Appl. Phys. B 75, 493-495 (2002).
[CrossRef]

1997

S. Arnon and N. S. Kopeika, "Laser satellite communication network-vibration effect and possible solutions," Proc. IEEE 85, 1646-1661 (1997).
[CrossRef]

1996

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

1994

G. A. Landis, "Applications for space power by laser transmission," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

R. D. Neal, T. S. McKechnie, and D. R. Neal, "System requirements for laser power beaming to geosynchronous satellites," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

R. Q. Fugate, "Laser beacon adaptive optics for power beaming applications," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

1989

C. C. Chen, "Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links," IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, "150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier," Appl. Phys. B 75, 493-495 (2002).
[CrossRef]

IEEE Trans. Antennas Propag.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelene, "Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communication link," IEEE Trans. Antennas Propag. 53, 842-850 (2005).
[CrossRef]

IEEE Trans. Commun.

C. C. Chen, "Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links," IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

Opt. Eng.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hard, D. Agren, S. Junique, Q. Wang, and B. Noharet, "Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering," Opt. Eng. 44, 045001 (2005).
[CrossRef]

A. Polishuk and S. Arnon, "Communication performance analysis of microsatellites using an optical phased array antenna," Opt. Eng. 42, 2015-2024 (2003).
[CrossRef]

Phys. Lasers

L. I. Ivleva, N. V. Bogodaev, P. A. Lykov, V. V. Osiko, and N. M. Polozkov, "Phase conjugation in SBN Crystals," Phys. Lasers 12, 702-706 (2002).

Proc. IEEE

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996).
[CrossRef]

S. Arnon and N. S. Kopeika, "Laser satellite communication network-vibration effect and possible solutions," Proc. IEEE 85, 1646-1661 (1997).
[CrossRef]

Proc. SPIE

G. A. Landis, "Applications for space power by laser transmission," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

R. D. Neal, T. S. McKechnie, and D. R. Neal, "System requirements for laser power beaming to geosynchronous satellites," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

R. Q. Fugate, "Laser beacon adaptive optics for power beaming applications," Proc. SPIE 2121, 252-255 (1994).
[CrossRef]

K. Takeda, M. Tanaka, S. Miura, K. Hashimoto, and N. Kawashima, "Laser power transmission for the energy supply to the rover exploring ice on the bottom of the crater in the lunar polar region," Proc. SPIE 4632, 223-227 (2002).
[CrossRef]

Other

F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, "Wireless power transmission experimentas an early contribution to planetary exploration missions," presented at the 54th International Astronautical Congress in Bremen, Germany, October 2003.

G. Oppenhäuser, "A world first: data transmission between European satellites using laser light," http://www.esa.int/esaCP/ESASGBZ84UC_Improving_2.html.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993), Chap. 2, p. 52, Eq. 2.2-34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Possible system design for the transmitter is shown. An incident plane wave signal beam is focused on the nonlinear crystals. Four one-way ring cavities include the photorefractive crystals as gain medium and are feed by the signal beam. A polarizing beam splitter couples light out of the cavity to a phase modulator. From there, the beams go back to the crystals to create the phase-conjugated signal beam.

Fig. 2
Fig. 2

Experimental setup for interference of two conjugated beams. A λ = 532   nm laser beam is made parallel by lens L1. Beam splitters (BS1, BS3, BS4, BS5) split the beam to generate the two pump beams for four-wave mixing in the nonlinear crystals (NLC1, NLC2). One beam is made divergent by lens L2 in order to simulate the pilot signal. This beam hits both crystals where a part of the wavefront is being phase conjugated. These two beams are propagating back and are taken out by BS2 and directed onto a CCD camera (Σ). Three polarizers ensures linear polarized incident light, and a λ / 2 plate regulates the power fraction of the pump beams.

Fig. 3
Fig. 3

(a) Signal beam and (b) its phase-conjugated beam generated by four-wave mixing in an SBN crystal.

Fig. 4
Fig. 4

Interference pattern in the focal point Σ of lens L2.

Fig. 5
Fig. 5

Intensity plot of the two interfering conjugated beams in the focal point Σ. The intensity is enhanced in parts of constructive interference.

Fig. 6
Fig. 6

Intensity is shown versus the angle mismatch Δ θ of the readout beam B3. The measured data fits well to a plot with L = 3   mm and θ B = 8 ° .

Fig. 7
Fig. 7

Diffraction efficiency for L = 1   mm and θ B = 45 ° against the angular mismatch Δθ.

Fig. 8
Fig. 8

Diffraction efficiency for an angular mismatch of Δ θ = 100   μrad against the coupling constant κ.

Fig. 9
Fig. 9

Diffraction efficiency against the 1 / e 2 beam divergence, normalized to an incident plane wave.

Equations (71)

Equations on this page are rendered with MathJax. Learn more.

Sr x Ba 1 x Nb 2 O 6
N × M
λ / 2
5 W / c m 2
I 1
I 3
I 4
K = k 2 k 1 ,
K
k 1
k 2
( I 4 I 3 )
η = sin 2 κ L ,
κ = n 1 π / ( λ cos θ B )
n 1
θ B
K = k 4 k 3 ,
k 3
k 4
Δ θ
η ( Δ θ ) = I 4 I 3 = κ 2 κ 2 + ( K Δ θ 2 ) 2 sin ( κ L ( 1 + ( K Δ θ 2 κ ) 2 ) 1 / 2 ) .
P 4 ( Δ θ ) = η ( Δ θ ) I ( θ ) sin θ d θ d φ .
I ( Δ θ ) = P 0 1 π σ e ( Δ θ 2 / σ 2 ) ,
1 / e
( N × M ) 2
N × M
Δ φ
θ s
θ s = arcsin ( Δ φ 2 π λ d ) ,
λ = 532   nm
150 mW
( > 300   m )
2 × 4 × 5   mm
L 1   ( f = 40   cm )
I 1
I 2
I 3
η = I 4 / I 3 = 0.04%
3   mm
( L = 3   mm )
κ = 6.7
15 m 1
L 2 ( f = 10 cm )
b = 3   mm
d = 0.9   cm
D = 147   cm
s = D λ d = 87   μm .
θ B = 8 °
3   mm
θ B = 8 °
L = 3   mm
Δ θ = 1   mrad
θ B = 45 °
L = 1   mm
150   μrad
Δ θ = 0 °
Δ θ = 100   μrad
κ = 1500 m 1
100   μrad
1 / e 2
100   μrad
200   μrad
λ = 532   nm
λ / 2
Δ θ
L = 3   mm
θ B = 8 °
L = 1   mm
θ B = 45 °
Δ θ = 100   μrad
1 / e 2

Metrics