## Abstract

Two-beam interferogram intensity modulation decoding using spatial carrier phase shifting interferometry is discussed. Single frame recording, simplicity of experimental equipment, and uncomplicated data processing are the main advantages of the method. A comprehensive analysis of the influence of systematic errors (spatial carrier miscalibration, nonuniform average intensity profile, and nonlinear recording) on the modulation distribution determination using automatic fringe pattern analysis techniques is presented. The results of searching for the optimum calculation algorithm are described.
Extensive numerical simulations are compared with laboratory findings obtained when testing vibrating silicon microelements under various experimental conditions.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$I\left(x,y\right)={I}_{0}\left(x,y\right)\left\{1+K\left(x,y\right)\gamma \left(x,y\right)\mathrm{cos}\left(\phi \left(x,y\right)+\alpha \left(x,y\right)\right)\right\}\text{,}$$
(2)
$$3{\text{A}}_{\mathrm{mod}}\text{:}{\scriptstyle \text{\hspace{0.17em}}\frac{1}{2}}\sqrt{{\left({I}_{2}^{\prime}-{I}_{4}^{\prime}\right)}^{2}+4{I}_{3}^{{\prime}^{2}}-{\left({I}_{2}^{\prime}+{I}_{4}^{\prime}\right)}^{2}}\text{,}$$
(3)
$${I}_{i}^{\prime}={I}_{i}-0.5\left({I}_{i-1}+{I}_{i+1}\right)\text{,}\phantom{\rule[-0.0ex]{1.0em}{0.0ex}}i=2,3,4\text{;}$$
(4)
$$5{\text{A}}_{\mathrm{mod}}\text{:}{\scriptstyle \text{\hspace{0.17em}}\frac{1}{4}}\sqrt{4{\left({I}_{2}-{I}_{4}\right)}^{2}+{\left(2{I}_{3}-{I}_{1}-{I}_{5}\right)}^{2}}\text{;}$$
(5)
$$5{\text{L}}_{\mathrm{mod}}\text{:}{\scriptstyle \text{\hspace{0.17em}}\frac{1}{2}}\sqrt{{\left({I}_{2}-{I}_{4}\right)}^{2}-\left({I}_{1}-{I}_{3}\right)\left({I}_{3}-{I}_{5}\right)}\text{,}$$
(6)
$$I\prime =I+{aI}^{2}+{bI}^{3}+{cI}^{4}+\dots ,$$