Abstract

There have been numerous applications of superresolution reconstruction algorithms to improve the range performance of infrared imagers. These studies show there can be a dramatic improvement in range performance when superresolution algorithms are applied to undersampled imager outputs. These occur when the imager is moving relative to the target, which creates different spatial samplings of the field of view for each frame. The degree of performance benefit is dependent on the relative sizes of the detector∕spacing and the optical blur spot in focal plane space. The minimum blur spot size achievable on the focal plane is dependent on the system F∕number. Hence, we provide a range of these sensor characteristics, for which there is a benefit from superresolution reconstruction algorithms. Additionally, we quantify the potential performance improvements associated with these algorithms. We also provide three infrared sensor examples to show the range of improvements associated with provided guidelines.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Schuler, "Superresolution," in Encyclopedia of Optical Engineering (Dekker, 2002).
  2. J. M. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "TARID-based image super-resolution," Proc. SPIE 4719, 247-254 (2002).
    [CrossRef]
  3. J. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "Resolution enhancement through TARID processing," Proc. SPIE 4671, 872-876 (2002).
    [CrossRef]
  4. J. Schuler, J. G. Howard, D. A. Scribner, P. R. Warren, R. B. Klein, M. P. Satyshur, and M. R. Kruer, "Resolution enhancement through a temporal accumulation of registered video," Proc. SPIE 4372, 137-142 (2001).
    [CrossRef]
  5. J. Schuler and D. A. Scribner, "Chapter 6: dynamic sampling, resolution enhancement, and super resolution," in Analysis of Sampled Imaging Systems (SPIE2000).
  6. J. Schuler, D. A. Scribner, and M. R. Kruer, "Alias reduction and resolution enhancement by a temporal accumulation of registered data from focal plane arrays," Proc. SPIE 4041, 94-102 (2000).
    [CrossRef]
  7. J. Schuler and D. A. Scribner, "Increasing spatial resolution through temporal super-sampling of digital video," Opt. Eng. 38, 801-805 (1999).
    [CrossRef]
  8. J. Schuler, D. A. Scribner, and M. R. Kruer, "Super sampling of digital video," in Proceedings of the 1999 Meeting of the IRIS Passive Sensors, Feb. 1999.
  9. J. Schuler, D. A. Scribner, and M. R. Kruer, "Super resolution imagery from multi-frame sequences with random motion," in Proceedings of the 1998 Meeting of the IRIS Specialty Group on Passive Sensors, March 1998.
  10. R. G. Driggers, K. A. Krapels, and S. S. Young, "The meaning of super-resolution," Proc. SPIE 5784, 103-106 (2005).
    [CrossRef]
  11. S. S. Young, "Alias-free image subsampling using Fourier-based windowing methods," Opt. Eng. 43, 843-855 (2004).
    [CrossRef]
  12. M. Kang and S. Chaudhuri, "Super-resolution image reconstruction," IEEE Signal Process. Mag. 20, 19-20 (2003).
    [CrossRef]
  13. R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems, SPIE Tutorial Texts in Optical Engineering (SPIE, 2000), Vol. TT39 [note chapter on superresolution by D. Scribner and J. Schuler].
    [CrossRef]
  14. R. H. Vollmerhausen, R. G. Driggers, and B. L. O'Kane, "Influence of sampling on target recognition and identification," Opt. Eng. 38, 763-772 (1999).
    [CrossRef]
  15. J. M. Wiltse and J. I. Miller, "Imagery improvements in staring infrared imagers by employing subpixel microscan," Opt. Eng. 44, 056401 (2005).
    [CrossRef]
  16. G. Armstrong, "Dual-waveband MWIR/visible three-axis stabilized sensor suite for submarine optronics masts," Proc. SPIE 3436, 676-684 (1998).
    [CrossRef]
  17. K. Krapels, R. G. Driggers, R. Vollmerhausen, and C. E. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither in under-sampled IRFPA imagers," Appl. Opt. 40, 101-112 (2001).
  18. R. G. Driggers, K. A. Krapels, S. Murrill, S. S. Young, M. Thielke, and J. Schuler, "Superresolution performance for undersampled imagers," Opt. Eng. 44, 014002 (2005).
    [CrossRef]
  19. P. Bijl and J. M. Valeton, "TOD, a new method to characterize electro-optical system performance," Proc. SPIE 3377, 182-193 (1998).
    [CrossRef]
  20. P. Bijl and J. M. Valeton, "TOD, the alternative to MRTD and MRC," Opt. Eng. 37, 1984-1994 (1998).
    [CrossRef]
  21. P. Bijl and J. M. Valeton, "Guidelines for accurate TOD measurement," Proc. SPIE 3701, 14-25 (1999).
    [CrossRef]
  22. E. Jacobs, R. G. Driggers, S. Young, K. A. Krapels, G. Tener, and J. Park, "NVThermIP modeling of super-resolution algorithms," Proc. SPIE 5784, 125-135 (2005).
    [CrossRef]

2005 (4)

R. G. Driggers, K. A. Krapels, and S. S. Young, "The meaning of super-resolution," Proc. SPIE 5784, 103-106 (2005).
[CrossRef]

J. M. Wiltse and J. I. Miller, "Imagery improvements in staring infrared imagers by employing subpixel microscan," Opt. Eng. 44, 056401 (2005).
[CrossRef]

R. G. Driggers, K. A. Krapels, S. Murrill, S. S. Young, M. Thielke, and J. Schuler, "Superresolution performance for undersampled imagers," Opt. Eng. 44, 014002 (2005).
[CrossRef]

E. Jacobs, R. G. Driggers, S. Young, K. A. Krapels, G. Tener, and J. Park, "NVThermIP modeling of super-resolution algorithms," Proc. SPIE 5784, 125-135 (2005).
[CrossRef]

2004 (1)

S. S. Young, "Alias-free image subsampling using Fourier-based windowing methods," Opt. Eng. 43, 843-855 (2004).
[CrossRef]

2003 (1)

M. Kang and S. Chaudhuri, "Super-resolution image reconstruction," IEEE Signal Process. Mag. 20, 19-20 (2003).
[CrossRef]

2002 (2)

J. M. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "TARID-based image super-resolution," Proc. SPIE 4719, 247-254 (2002).
[CrossRef]

J. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "Resolution enhancement through TARID processing," Proc. SPIE 4671, 872-876 (2002).
[CrossRef]

2001 (2)

J. Schuler, J. G. Howard, D. A. Scribner, P. R. Warren, R. B. Klein, M. P. Satyshur, and M. R. Kruer, "Resolution enhancement through a temporal accumulation of registered video," Proc. SPIE 4372, 137-142 (2001).
[CrossRef]

K. Krapels, R. G. Driggers, R. Vollmerhausen, and C. E. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither in under-sampled IRFPA imagers," Appl. Opt. 40, 101-112 (2001).

2000 (1)

J. Schuler, D. A. Scribner, and M. R. Kruer, "Alias reduction and resolution enhancement by a temporal accumulation of registered data from focal plane arrays," Proc. SPIE 4041, 94-102 (2000).
[CrossRef]

1999 (3)

J. Schuler and D. A. Scribner, "Increasing spatial resolution through temporal super-sampling of digital video," Opt. Eng. 38, 801-805 (1999).
[CrossRef]

R. H. Vollmerhausen, R. G. Driggers, and B. L. O'Kane, "Influence of sampling on target recognition and identification," Opt. Eng. 38, 763-772 (1999).
[CrossRef]

P. Bijl and J. M. Valeton, "Guidelines for accurate TOD measurement," Proc. SPIE 3701, 14-25 (1999).
[CrossRef]

1998 (3)

P. Bijl and J. M. Valeton, "TOD, a new method to characterize electro-optical system performance," Proc. SPIE 3377, 182-193 (1998).
[CrossRef]

P. Bijl and J. M. Valeton, "TOD, the alternative to MRTD and MRC," Opt. Eng. 37, 1984-1994 (1998).
[CrossRef]

G. Armstrong, "Dual-waveband MWIR/visible three-axis stabilized sensor suite for submarine optronics masts," Proc. SPIE 3436, 676-684 (1998).
[CrossRef]

Appl. Opt. (1)

K. Krapels, R. G. Driggers, R. Vollmerhausen, and C. E. Halford, "Performance comparison of rectangular (4-point) and diagonal (2-point) dither in under-sampled IRFPA imagers," Appl. Opt. 40, 101-112 (2001).

IEEE Signal Process. Mag. (1)

M. Kang and S. Chaudhuri, "Super-resolution image reconstruction," IEEE Signal Process. Mag. 20, 19-20 (2003).
[CrossRef]

Opt. Eng. (6)

S. S. Young, "Alias-free image subsampling using Fourier-based windowing methods," Opt. Eng. 43, 843-855 (2004).
[CrossRef]

R. G. Driggers, K. A. Krapels, S. Murrill, S. S. Young, M. Thielke, and J. Schuler, "Superresolution performance for undersampled imagers," Opt. Eng. 44, 014002 (2005).
[CrossRef]

R. H. Vollmerhausen, R. G. Driggers, and B. L. O'Kane, "Influence of sampling on target recognition and identification," Opt. Eng. 38, 763-772 (1999).
[CrossRef]

J. M. Wiltse and J. I. Miller, "Imagery improvements in staring infrared imagers by employing subpixel microscan," Opt. Eng. 44, 056401 (2005).
[CrossRef]

J. Schuler and D. A. Scribner, "Increasing spatial resolution through temporal super-sampling of digital video," Opt. Eng. 38, 801-805 (1999).
[CrossRef]

P. Bijl and J. M. Valeton, "TOD, the alternative to MRTD and MRC," Opt. Eng. 37, 1984-1994 (1998).
[CrossRef]

Proc. SPIE (9)

P. Bijl and J. M. Valeton, "Guidelines for accurate TOD measurement," Proc. SPIE 3701, 14-25 (1999).
[CrossRef]

E. Jacobs, R. G. Driggers, S. Young, K. A. Krapels, G. Tener, and J. Park, "NVThermIP modeling of super-resolution algorithms," Proc. SPIE 5784, 125-135 (2005).
[CrossRef]

J. Schuler, D. A. Scribner, and M. R. Kruer, "Alias reduction and resolution enhancement by a temporal accumulation of registered data from focal plane arrays," Proc. SPIE 4041, 94-102 (2000).
[CrossRef]

J. M. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "TARID-based image super-resolution," Proc. SPIE 4719, 247-254 (2002).
[CrossRef]

J. Schuler, J. G. Howard, P. R. Warren, and D. A. Scribner, "Resolution enhancement through TARID processing," Proc. SPIE 4671, 872-876 (2002).
[CrossRef]

J. Schuler, J. G. Howard, D. A. Scribner, P. R. Warren, R. B. Klein, M. P. Satyshur, and M. R. Kruer, "Resolution enhancement through a temporal accumulation of registered video," Proc. SPIE 4372, 137-142 (2001).
[CrossRef]

G. Armstrong, "Dual-waveband MWIR/visible three-axis stabilized sensor suite for submarine optronics masts," Proc. SPIE 3436, 676-684 (1998).
[CrossRef]

P. Bijl and J. M. Valeton, "TOD, a new method to characterize electro-optical system performance," Proc. SPIE 3377, 182-193 (1998).
[CrossRef]

R. G. Driggers, K. A. Krapels, and S. S. Young, "The meaning of super-resolution," Proc. SPIE 5784, 103-106 (2005).
[CrossRef]

Other (5)

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems, SPIE Tutorial Texts in Optical Engineering (SPIE, 2000), Vol. TT39 [note chapter on superresolution by D. Scribner and J. Schuler].
[CrossRef]

J. Schuler and D. A. Scribner, "Chapter 6: dynamic sampling, resolution enhancement, and super resolution," in Analysis of Sampled Imaging Systems (SPIE2000).

J. Schuler, "Superresolution," in Encyclopedia of Optical Engineering (Dekker, 2002).

J. Schuler, D. A. Scribner, and M. R. Kruer, "Super sampling of digital video," in Proceedings of the 1999 Meeting of the IRIS Passive Sensors, Feb. 1999.

J. Schuler, D. A. Scribner, and M. R. Kruer, "Super resolution imagery from multi-frame sequences with random motion," in Proceedings of the 1998 Meeting of the IRIS Specialty Group on Passive Sensors, March 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Triangle orientation determination probability curves for superresolved and undersampled imagery.

Fig. 2
Fig. 2

Triangle target.

Fig. 3
Fig. 3

Generalized sampled imaging system.

Fig. 4
Fig. 4

Presample blur MTF, H ( ω ) , is shown in (a). Sampling H ( ω ) replicates H ( ω ) at multiples of the sample frequency as shown in (b). The display and eye MTF, Pix ( ω ) , is shown in (c), along with the presample blur and the sample-generated replicas of the presample blur. In (d), the transfer response (baseband spectrum) is created by Pix ( ω ) multiplying H ( ω ) (frequency by frequency), and the spurious response is created by Pix ( ω ) multiplying the sample-generated replicas of H ( ω ) .

Fig. 5
Fig. 5

Undersampled and well-sampled imagers.

Fig. 6
Fig. 6

MWIR regions of superresolution benefit.

Fig. 7
Fig. 7

LWIR regions of superresolution benefit.

Fig. 8
Fig. 8

NVThermIP model outputs for baseline (without SR-REC) long-wave FLIR.

Fig. 9
Fig. 9

NVThermIP model outputs for long-wave FLIR with superresolution reconstruction.

Fig. 10
Fig. 10

NVThermIP modeled range performance improvement for SR-REC versus baseline imagery as a function of the F∕number.

Fig. 11
Fig. 11

Example from the MWIR sensor for the benefit of SR-REC.

Fig. 12
Fig. 12

Example of LWIR sensor and imagery that benefit from SR-REC.

Fig. 13
Fig. 13

Example of a high F∕number sensor with very little benefit from SR-REC.

Tables (2)

Tables Icon

Table 1 NVThermIP Model Inputs

Tables Icon

Table 2 NVThermIP Model Outputs—Range and Contrast

Metrics