Abstract

Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes– Mie lidar with three frequency analyzers, two double-edge Fabry–Perot interferometers, one at 1064  nm (IR-FPI) and another at 355   nm (UV-FPI), as well as an iodine vapor filter (IVF) at 532   nm, utilizing either a single absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF), was considered in a companion paper [Appl. Opt. 46, 4434 (2007)], assuming known atmospheric temperature and aerosol mixing ratio, R b. The effects of temperature and aerosol variations on the uncertainty of LOS wind measurements are investigated and it is found that while the effect of temperature variation is small, the variation in Rb can cause significant errors in wind measurements with IVF systems. Thus the means to incorporate a credible determination of Rb into the wind measurement are presented as well as an assessment of the impact on wind measurement uncertainty. Unlike with IVF methods, researchers can take advantage of design flexibility with FPI methods to desensitize either molecular scattering for IR-FPI or aerosol scattering for UV-FPI. The additional wind measurement uncertainty caused by Rb variation with FPI methods is thus negligible for these configurations. Assuming 100,000 photons from Cabannes scattering, and accounting for the R b measurement incorporated into the IVF method in this paper, it is found that the lowest wind uncertainty at low wind speeds in aerosol-free air is still with UV-FPI, 32% lower than with de-IVF. For 0.05<Rb<0.07, the LOS wind uncertainty is lowest with de-IVF, and for Rb>0.07, the IR-FPI outperforms all other methods. In addition to LOS wind uncertainty comparison under high wind speed conditions, the need of an appropriate and readily available narrowband filter for operating the wind lidar at visible wavelengths under sunlit condition is discussed; with such a filter the degradation of LOS wind measurement attributable to clear sky background is estimated to be 5% or less for practical lidar systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).
  2. A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).
  3. Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-O. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002).
  4. A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).
  5. V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
    [CrossRef]
  6. C. Flesia and C. L. Korb, "Theory of the double-edge molecular technique for Doppler lidar wind measurement," Appl. Opt. 38, 432-440 (1999).
  7. B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355 nm molecular Doppler lidar," Opt. Lett. 25, 1231-1233 (2000).
  8. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
  9. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Portenuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. 1. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).
  10. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).
  11. C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).
  12. C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).
  13. J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.
  14. M. J. McGill, W. D. Hart, J. A. McKay, and J. D. Spinhirne, "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability," Appl. Opt. 38, 6388-6397 (1999).
  15. K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).
  16. R. M. Measures, Laser Remote Sensing (Wiley, 1984) p. 224.
  17. B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.
  18. J. N. Forkey, W. R. Lempert, and R. B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths," Appl. Opt. 36, 6729-6738, 1997.
  19. R. D. Bates, "Rayleigh scattering by air," Planet. Space Sci. 32, 785-790 (1984).
  20. C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar," Appl. Opt. 40, 4875-4884 (2001).
  21. NOAA, NASA, and U.S. Air Force, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office: 1976O-588-256, 1976).

2007

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

2005

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

2003

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

2002

2001

C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar," Appl. Opt. 40, 4875-4884 (2001).

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

2000

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355 nm molecular Doppler lidar," Opt. Lett. 25, 1231-1233 (2000).

1999

1996

J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.

1995

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

1992

A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).

1984

R. D. Bates, "Rayleigh scattering by air," Planet. Space Sci. 32, 785-790 (1984).

Abo, M.

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Abreu, V. J.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Adolfsen, K.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Amiridis, V.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Anderson, B. E.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Atlas, E. L.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Avery, M. A.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Balis, D.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Barbes, J. E.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Bartlett, K. B.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Bates, R. D.

R. D. Bates, "Rayleigh scattering by air," Planet. Space Sci. 32, 785-790 (1984).

Baumgarten, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Blake, D. R.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Brackett, V. G.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Brune, W. H.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Butler, C. F.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Caldwell, L. M.

Castanho, A. D. A.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Chanin, M. L.

A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).

Chen, H.

Chen, W.-B.

Chourdakis, G.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Dibb, J. E.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Edward, V. B.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Fenn, M. A.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Fiedler, J.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Fischer, K. W.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Flesia, C.

Forkey, J. N.

Fricke, K. H.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Fried, Alan

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Fuelberg, H. E.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Galbraith, A. E.

J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.

Garnier, A.

Gentry, B. M.

Grabowski, J.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Grant, W. B.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Hair, J. W.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-O. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002).

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).

Hart, W. D.

Hauchecorne, A.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Portenuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. 1. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).

Heikes, B. G.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Hertzog, A.

Hu, Y.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Irgang, T. D.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Jacob, D. J.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Kawahara, T. D.

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

Kazadzis, S.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Korb, C. L.

Krueger, D. A.

Lempert, W. R.

Li, S. X.

Li, Z.-G.

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Liu, B.-Y.

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Liu, J.-T.

Liu, Z.-S.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-O. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002).

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

McGill, M. J.

M. J. McGill, W. D. Hart, J. A. McKay, and J. D. Spinhirne, "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability," Appl. Opt. 38, 6388-6397 (1999).

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

McKay, J. A.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, 1984) p. 224.

Miles, R. B.

Nagai, T.

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Nagasawa, C.

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Nelke, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Newell, R. E.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Nickovic, S.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Papayannis, A.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Portenuve, J.

Quo, J.-J.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

Reagan, J. A.

J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.

Rees, D.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Sachse, G. W.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Sandholm, S. T.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

She, C. Y.

She, C.-Y.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-O. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002).

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).

Shibata, Y.

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Singh, H. B.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Skinner, W. R.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Song, X.-O.

Souprayen, C.

Spinhirne, J. D.

M. J. McGill, W. D. Hart, J. A. McKay, and J. D. Spinhirne, "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability," Appl. Opt. 38, 6388-6397 (1999).

J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.

Sun, Z.-B.

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Talbot, R. W.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Tsaknakis, G.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Uchino, O.

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Vance, J. D.

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

Vay, S. A.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

von Cossart, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

von Zahn, U.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

Wang, R.-B.

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Weber, R. J.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Williams, B. P.

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

Wu, D.

Wu, Q.

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

Wu, S.-H.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

Yan, Z.-A.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Yue, J.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

Zerefos, C.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

Zhang, K.-L.

Appl. Opt.

C.-Y. She, J. Yue, Z.-A. Yan, J. W. Hair, J.-J. Quo, S.-H. Wu, and Z.-S. Liu, "Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods," Appl. Opt. 46, 4434-4443 (2007).

J. N. Forkey, W. R. Lempert, and R. B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths," Appl. Opt. 36, 6729-6738, 1997.

C. Flesia and C. L. Korb, "Theory of the double-edge molecular technique for Doppler lidar wind measurement," Appl. Opt. 38, 432-440 (1999).

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Portenuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. 1. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).

M. J. McGill, W. D. Hart, J. A. McKay, and J. D. Spinhirne, "Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability," Appl. Opt. 38, 6388-6397 (1999).

C. Y. She, "Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidar," Appl. Opt. 40, 4875-4884 (2001).

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).

Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-O. Song, J. W. Hair, and C.-Y. She, "Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter," Appl. Opt. 41, 7079-7086 (2002).

Appl. Phys. B

A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).

Atmos. Chem. Phys.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, "Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project," Atmos. Chem. Phys. 5, 2065-2079 (2005).

J. Can. Phys.

C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, "An all-solid-state transportable narrowband sodium lidar for mesopause region temperature and horizontal wind measurements," J. Can. Phys. 85, 111-118 (2007).

J. Geophys. Res.

V. B. Edward, M. A. Fenn, C. F. Butler, W. B. Grant, V. G. Brackett, J. W. Hair, M. A. Avery, R. E. Newell, Y. Hu, H. E. Fuelberg, D. J. Jacob, B. E. Anderson, E. L. Atlas, D. R. Blake, W. H. Brune, J. E. Dibb, Alan Fried, B. G. Heikes, G. W. Sachse, S. T. Sandholm, H. B. Singh, R. W. Talbot, S. A. Vay, R. J. Weber, and K. B. Bartlett, "Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring," J. Geophys. Res. 108, 8805-8830 (2003), doi:.
[CrossRef]

Opt. Eng.

K. W. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barbes, M. J. McGill, and T. D. Irgang, "Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night," Opt. Eng. 34, 499-511 (1995).

Opt. Lett.

Planet. Space Sci.

R. D. Bates, "Rayleigh scattering by air," Planet. Space Sci. 32, 785-790 (1984).

Proc. SPIE

C. Nagasawa, Y. Shibata, M. Abo, T. Nagai, and O. Uchino, "Incoherent Doppler lidar using wavelengths for wind measurement," in Lidar Remote Sensing for Industry and Environment Monitoring, U. Singh, T. Itabe, and N. Sugimoto, eds., Proc. SPIE 4153, 338-349 (2001).

Other

J. A. Reagan, A. E. Galbraith, and J. D. Spinhirne, "Micro pulse lidar daytime performance: simulations and observations," in Geoscience and Remote Sensing Symposium, Remote Sensing for a Sustainable Future (IEEE, 1996), pp. 683-685.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).

NOAA, NASA, and U.S. Air Force, U.S. Standard Atmosphere, 1976 (U.S. Government Printing Office: 1976O-588-256, 1976).

R. M. Measures, Laser Remote Sensing (Wiley, 1984) p. 224.

B.-Y. Liu, Z.-S. Liu, Z.-G. Li, Z.-A. Yan, R.-B. Wang, and Z.-B. Sun, "Wind measurements with incoherent Doppler Lidar based on iodine filters at night and day," in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 55-58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Normalized difference wind ratio (NDWR) as a function of Doppler shift for the four direct-detection methods, each with three selected R b values within the typical range of values at 275 K. (a) IR-FPI at 1064   nm , (b) UV-FPI at 355   nm , (c) se-IVF at 532   nm , and (d) de-IVF at 532   nm . In addition, the curves for two R b values at 300   K are shown in panels (b)–(d). The NDWR for IR-FPI in (a) is independent of temperature and R b .

Fig. 2
Fig. 2

Dependence of LOS wind measurement sensitivity, S ν D , and SNR at three different Doppler shifts as a function of R b . (a) IR-FPI, (b) UV-FPI, (c) se-IVF, and (d) de-IVF. The curves were evaluated for Doppler shifts corresponding to LOS wind speeds of 0, 13.3, and 26.6 m / s for (b)–(d), and of 0, 5.3, and 10.6 m / s for (a).

Fig. 3
Fig. 3

Effect of R b variation on LOS wind measurements. (a) Fractional change of R W per unity change of R b , R W / ( R W R b ) , plotted as a function of R b with Doppler shifts of 0, 0.05, and 0.10   GHz for both se-IVF and de-IVF. (b) Variation and fractional variation of R b , | δ R b | , and | δ R b / R b | for both se-IVF and de-IVF, based at signal levels of 100,000 ( R b + 1 ) .

Fig. 4
Fig. 4

(Color online) LOS wind uncertainties as a function of R b due to photon noise (thin) and R b variation (thick) at three Doppler shifts, 0, 0.05, and 0.10   GHz , based on 100,000 ( R b + 1 ) signal photons received for (a) se-IVF and (b) de-IVF. Notice that the uncertainty attributable to R b variation at zero Doppler shift for de-IVF in (b) is so small that it is off the scale.

Fig. 5
Fig. 5

(Color online) LOS wind uncertainty based on 100,000 Cabannes photons and ideal photodetectors for the four methods as a function of aerosol mixing ratio, R b , (a) 0 < R b < 1.0 , and (b) 0 < R b < 10.0 , with the effect of extra time required for R b measurement in se-IVF and de-IVF included. The wind uncertainties for both low wind speed (thin) and high wind speed (thick) in gigahertz are shown. In (a) the curve for IR-FPI at low wind speed ( ν D = 0 ) is very slightly lower than that at high speed ( ν D = 0.02 ) , while the difference between UV-FPI curves is so small that it is not discernable in the figure. Notice that the wind uncertainty of se-IVF at ν D = 0 between R b = 0.1 and R b = 0.5 is nearly coincident with that of de-IVF at ν D = 0.1   GHz ; the former exceeds the latter for R b > 0.5 and approaches that of se-IVF at ν D = 0.1   GHz for large values of R b , as in (b).

Tables (2)

Tables Icon

Table 1 Background Counts and Percent Degradation in SNR at 532 nm with 50 Hz System

Tables Icon

Table 2 Estimation of Times Needed to Accumulate a Prespecified Signal Level

Equations (410)

Equations on this page are rendered with MathJax. Learn more.

1064   nm
355   nm
532   nm
R b
R b
R b
32 %
0.05 < R b < 0.07
R b > 0.07
1064   nm
355   nm
532   nm
275   K
R b
100,000 ( R b + 1 )
( R b = 0 )
16 %
R b
R b > 0.08
R b
R b
R b
N 1
N 2
R b
ν D
V LOS
ν D = 2 V LOS / λ
R W
R W ( ν D , R b ) = N 1 ( ν D , R b ) N 2 ( ν D , R b ) .
ν D
R b
R W
d R W R W = R W R W ν D δ ν D + R W R W R b δ R b .
R b
d R W / R W
δ ν D
S ν D = ( R W / ν D ) / R W
V LOS = λ 2  d ν D = λ 2 ( S ν D 1 ) d R W R W .
S ν D
ν D
R b
80 %
R W
ν D
R b
NDWR = R W ( ν D , R b ) R W ( 0 , R b ) R W ( 0 , R b ) .
ν D = 0
R W ( ν D , R b )
R W ( ν D , R b )
R b
532   nm
50   m / s
0.188   GHz
1064   nm
R b
0 < R b < 2
0 < R b < 5
0 < R b < 40
1064   nm
R b
R b
300   K
R b
532   nm
355   nm
R b
R b
R b
R b
R b
R b
R b
V LOS
ν D
R b
R b
300   K
300   K
300   K
275   K
0.75   atm
275   K
R b = 0.0
ν D 0.15   GHz
ν D 0.10   GHz
532   nm
R b
R b
ν D 0.15   GHz
R b = 0.75
Δ R b = 0.1
355   nm
R b = 0
R b = 2
300   K
R b
ν D 0.1   GHz
R b = 0.75
Δ R b = 0.1
ν D
R b
R b
R b
R b
R b
R b
S ν D
ν D
R b
20 m / s
ν D
S ν D
R b
ν D
R b
R b
d V LOS
R b
δ R b
d R W / R W
δ R b
δ ν D
d ν D
R b
R b
V LOS = λ 2 δ ν D = λ 2 S ν D 1 ( R W R W R b ) δ R b .
R W ( ν D , R b )
ν D
R b
| d V LOS |
R b
S ν D 1
R b
R W / ( R W R b )
R b
δ R b
R W / ( R W R b )
δ R b
δ R W / R W = ( SNR ) 1
R W / ( R W R b )
δ R b
R b
ν D
R W / ( R W R b )
R b
R b
δ R b
R b
100,000 ( R b + 1 )
R b
δ R b
δ R b / R b
R b
R W / ( R W R b )
δ R b
R b
100,000 ( R b + 1 )
R b
R b > 0.25
R b
R b
R b
R b
ν D = 0 , 0.05
0.10   GHz
R b = 0.5
0.78 m / s
ν D = 0 , 0.05
0.10   GHz
R b
0.267 m / s
ν D
R b
R b = 0.5
0.62 m / s
ν D = 0 , 0.05
0.10   GHz
R b
0.389 m / s
ν D = 0
R b
R b
ν D = ± 0.1   GHz
R b
R b
R b
R b
f a = 0
f c = 0.3
275   K
R b
N m = N ξ m ( f c )
N R = N ξ R ( R b + 1 )
R b = ξ m f c N R ξ R N m 1 ; d R b = ( R b + 1 ) [ d N R N R d N m N m ] ,
| δ R b | = ( R b + 1 ) N R + N m N R N m = ( R b + 1 ) 1 ξ m f c + 1 ξ R ( R b + 1 ) 1 N .
N = 100,000
R b , | δ R b |
| δ R b | / R b
R b
ξ m = 0.6
ξ R = 0.4
ξ m = 0.9
ξ R = 0.1
R b
ν D
ξ 1 = ξ m
R b
ν D = 0 , 0.05
0.1   GHz
ξ R = 0.1
R b
( 1.5 )
R b
0 < R b < 1.0
0 < R b < 10
V LOS = 0
( V LOS = 26.6 m / s
ν D = 0.1   GHz
532   nm
R b
R b = 0.5
1.17 m / s
ν D = 0
ν D = 0.1   GHz
1.01   m / s
R b = 0.5
26.6 m / s
10.6 m / s
2.07 m / s
0.32 m / s
ν D = 0
R b = 0.1
R b = 0.5
ν D = 0.1   GHz
R b > 0.5
ν D = 0.1   GHz
R b
R b = 0
R b
4.31 m / s
R b = 0.0
( 2.79 × 1.5 )
( 4.31 × 2 )
( ν D 0 )
( 26.6 m / s )
32 %
0.053 < R b < 0.067
R b > 0.067
R b < 0.071
R b > 0.071
R b > 0.2
R b
0.053 < R b < 0.067
R b
= 0.5 Wm 2
10 Wm 2
PA = 0.5 Wm 2
R b
1.4
1.2
355   nm
532   nm
532   nm
1.92   GHz
1064   nm
1.92   GHz / 4 = 480   MHz
960   MHz
20%
60%
( N m i )
R W
532   nm
100 Wm 2 sr 1 μm 1
355   nm
355   nm
1064   nm
532   nm
N S B
N = 100,000
SNR = N / ( N  +  N S B )
1  +  N S B N
100 × [ 1  +  N S B N 1 ]
R b
R b
N S B = λ h c S b ( λ ) η χ ξ Ω o A o τ d Δ λ ,
S b ( λ )
Ω o
A o
Δ λ
Wm 2 sr 1 μm 1
τ d
Δ t
N = 100,000
τ d
Δ λ
2 Δ z / c
( 2 Δ z / c ) r
ξ = ( 2 Δ z c r ) .
50   Hz
r = 50
532   nm
532   nm
0.11   nm
170   μrad
Δ λ = 0.1   nm = 1.0 × 10 4   μm
Ω o = π ( 2 × 10 4 ) 2 / 4
200   μrad
N S B
η = 0.01
N S B = λ h c S b ( λ ) η χ ξ Ω o A o τ d Δ λ = 1.05 × 10 3 λ S b ( λ ) χ A o r τ d Δ z .
2 Δ ν FWHM / Δ ν FSR
χ 0.5
Δ t = τ d
PA = 0.5 Wm 2
10   km
PA = 0.5 Wm 2
PA = 10 Wm 2
PA = 10 Wm 2
S b ( λ ) = 100 Wm 2 sr 1 μm 1
τ d
532   nm
50   Hz
532   nm
532   nm
355 n m
PA = 10 Wm 2
0.1   nm
10 H z
R b
R b
R b
532   nm
1064   nm
50   Hz
532   nm
PA = 10 Wm 2
( 0.1 n m )
R b
100,000 ( R b + 1 )
R b
R b
R b
R b
R b = 0.0
N = 100,000
( 26.6 m / s )
R b > 0.2
532   nm
n ( z )
Δ z
Δ t
N = η P Δ t h ν A z 2 d σ d Ω [ n ( z ) Δ z ] .
η = 0.01
532   nm
6.0 × 10 32 m 2 / sr
N = η PA 3.47 × 10 19 Δ t Δ z z 2 ( 6.0 × 10 32 ) n ( z ) = η ( 1.73 × 10 13 ) ( PA ) n ( z ) × 10 6 z ( km ) 2 ( Δ t Δ z ) .
Δ t = 5.78 × 10 18 ( N η PA ) z ( km ) 2 n ( z ) 1 Δ z ( m ) ; η = 0.01.
PA = 0.5 Wm 2 ( P = 5   W
A = 0.1 m 2
( z 10   km )
PA = 10 Wm 2
( P = 20   W
A = 0.5 m 2
( z 10   km )
Δ t
Δ z
PA = 0.5 Wm 2
PA = 10 Wm 2
W m 2
m 2
W m 2 S r 1 μ m 1
R b
1064   nm
355   nm
532   nm
532   nm
R b
300   K
R b
S ν D
26.6 m / s
10.6 m / s
R b
R W
R b
R W / ( R W R b )
R b
0.10   GHz
R b , | δ R b |
| δ R b / R b |
100,000 ( R b + 1 )
R b
R b
0.10   GHz
100,000 ( R b + 1 )
R b
R b
0 < R b < 1.0
0 < R b < 10.0
R b
( ν D = 0 )
( ν D = 0.02 )
ν D = 0
R b = 0.1
R b = 0.5
ν D = 0.1   GHz
R b > 0.5
ν D = 0.1   GHz
R b

Metrics