Abstract

A fiber-based 1.5μm heterodyne lidar that is easily switched between pulse-pair and cw modes is described. In laboratory experiments using well-controlled vibrating targets, and in computer simulations, the performance of the two modes is compared given the same average laser power. The accuracy of Doppler frequency (target velocity) estimates, and the signal-to-noise ratio in spectrally resolved plots of vibrational features, are evaluated. When the target-induced frequency modulation is wideband, pulse-pair often has clearly higher carrier-to-noise. But its advantage in signal-to-noise is smaller because combining the more numerous cw measurements improves the estimates of vibration frequencies and amplitudes. They are combined here through autocorrelation-based demodulation, one of several methods that can outperform phase-differencing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (174)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription