Abstract

Subwavelength metallic and dielectric diffraction gratings which rotate the linear polarization of incident light by 90° are examined. Using rigorous diffraction theory in total-internal-reflection configuration, it is shown that full conversion from incident transverse electric field to transverse magnetic zero-order field can be achieved with both dielectric and metallic elements, but dielectric gratings provide higher efficiency and are thus preferable. The fabrication aspects and constraints are discussed in detail and the behavior of the gratings over broad wavelength bands is presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  2. D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983).
    [CrossRef]
  3. R. C. Enger and S. K. Case, "Optical elements with high ultrahigh spatial-frequency surface corrugations," Appl. Opt. 22, 3220-3228 (1983).
    [CrossRef] [PubMed]
  4. L. H. Cescato, E. Gluch, and N. Streibl, "Holographic quarter wave plates," Appl. Opt. 29, 3286-3290 (1990).
    [CrossRef] [PubMed]
  5. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995).
    [CrossRef] [PubMed]
  6. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Subwavelength transmission grating retarders for use at 10.6 microns," Appl. Opt. 35, 6195-6202 (1996).
    [CrossRef] [PubMed]
  7. L. Pang, M. Nezhad, U. Levy, C.-H. Tsai, and Y. Fainman, "Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask," Appl. Opt. 44, 2377-2381 (2005).
    [CrossRef] [PubMed]
  8. T. J. Kim, G. Campbell, and R. K. Kostuk, "Volume holographic phase retardation elements," Opt. Lett. 20, 2030-2032 (1995).
    [CrossRef] [PubMed]
  9. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
    [CrossRef]
  10. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
    [CrossRef]
  11. C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
    [CrossRef]
  12. V. Kettunen and F. Wyrowski, "Reflection-mode phase retardation by dielectric gratings," Opt. Commun. 158, 41-44 (1998).
    [CrossRef]
  13. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
    [CrossRef]
  14. S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
    [CrossRef]
  15. S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
    [CrossRef]
  16. Y.-L. Kok and N. C. Gallagher, Jr., "Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating," J. Opt. Soc. Am. A 40, 65-73 (1988).
    [CrossRef]
  17. R. A. Watts and J. R. Sambles, "Reflection grating as polarization converters," Opt. Commun. 140, 179-183 (1997).
    [CrossRef]
  18. H. Kikuta, Y. Ohira, and K. Iwata, "Achromatic quarter-wave plates using the dispersion of form birefringence," Appl. Opt. 36, 1566-1572 (1997).
    [CrossRef] [PubMed]
  19. G. P. Nordin and P. C. Deguzman, "Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region," Opt. Express 5, 163-168 (1999).
    [CrossRef] [PubMed]
  20. N. Bokor, R. Shechter, N. Davidson, A. A. Friesem, and E. Hasman, "Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength," Appl. Opt. 40, 2076-2080 (2001).
    [CrossRef]
  21. D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
    [CrossRef]
  22. X. Deng, F. Liu, J. J. Wang, P. F. Sciortino, J. L. Chen, and X. Liu, "Achromatic wave plates for optical pickup units fabricated by use of imprint lithography," Opt. Lett. 30, 2614-2616 (2005).
    [CrossRef] [PubMed]
  23. W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, "Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure," Appl. Opt. 45, 2601-2606 (2006).
    [CrossRef] [PubMed]
  24. I. R. Hooper and J. R. Sambles, "Broadband polarization-converting mirror for the visible region of the spectrum," Opt. Lett. 27, 2152-2154 (2002).
    [CrossRef]
  25. In this paper TE and TM refer to polarization components in and perpendicular to the plane defined by incident and reflected waves, not to the entire grating-diffraction geometry in which the TE/TM decomposition is not valid because of coupling of electric-field components in the grating owing to conical incidence.
  26. L. Li, "A modal analysis of lamellar diffraction gratings in conical mountings," J. Mod. Opt. 40, 553-573 (1993).
    [CrossRef]
  27. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
    [CrossRef]
  28. L. Li, "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A 20, 655-660 (2003).
    [CrossRef]
  29. CRC Handbook of Chemistry and Physics, 64th ed. (CRC, 1984).
  30. S.-C. Chiao, B. G. Bovard, and H. A. Macleod, "Optical-constant calculation over an extended spectral region: application to titanium dioxide film," Appl. Opt. 34, 7355-7360 (1995).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (2)

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

2003 (2)

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

L. Li, "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A 20, 655-660 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (1)

1998 (1)

V. Kettunen and F. Wyrowski, "Reflection-mode phase retardation by dielectric gratings," Opt. Commun. 158, 41-44 (1998).
[CrossRef]

1997 (2)

1996 (2)

1995 (3)

1993 (2)

L. Li, "A modal analysis of lamellar diffraction gratings in conical mountings," J. Mod. Opt. 40, 553-573 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

1991 (2)

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
[CrossRef]

1990 (2)

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

L. H. Cescato, E. Gluch, and N. Streibl, "Holographic quarter wave plates," Appl. Opt. 29, 3286-3290 (1990).
[CrossRef] [PubMed]

1988 (1)

Y.-L. Kok and N. C. Gallagher, Jr., "Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating," J. Opt. Soc. Am. A 40, 65-73 (1988).
[CrossRef]

1983 (2)

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983).
[CrossRef]

R. C. Enger and S. K. Case, "Optical elements with high ultrahigh spatial-frequency surface corrugations," Appl. Opt. 22, 3220-3228 (1983).
[CrossRef] [PubMed]

Bokor, N.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Bovard, B. G.

Brundrett, D. L.

Bryan-Brown, G. P.

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
[CrossRef]

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

Campbell, G.

Case, S. K.

Cescato, L. H.

Chen, J. L.

Cheng, C.-C.

Chiao, S.-C.

Davidson, N.

Deguzman, P. C.

Deng, X.

Elston, S. J.

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

Enger, R. C.

Fainman, Y.

Flanders, D. C.

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983).
[CrossRef]

Friesem, A. A.

Fujita, T.

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Gallagher, N. C.

Y.-L. Kok and N. C. Gallagher, Jr., "Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating," J. Opt. Soc. Am. A 40, 65-73 (1988).
[CrossRef]

Gaylord, T. K.

Gluch, E.

Glytsis, E. N.

Haggans, C. W.

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Hasman, E.

Hooper, I. R.

Hutley, M. C.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

Isano, T.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Ishizuka, K.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Iwakami, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Iwata, K.

Jin, G.-F.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Kaneda, Y.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Kettunen, V.

V. Kettunen and F. Wyrowski, "Reflection-mode phase retardation by dielectric gratings," Opt. Commun. 158, 41-44 (1998).
[CrossRef]

Kikuta, H.

Kim, T. J.

Kok, Y.-L.

Y.-L. Kok and N. C. Gallagher, Jr., "Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating," J. Opt. Soc. Am. A 40, 65-73 (1988).
[CrossRef]

Konishi, T.

W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, "Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure," Appl. Opt. 45, 2601-2606 (2006).
[CrossRef] [PubMed]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

Kostuk, R. K.

T. J. Kim, G. Campbell, and R. K. Kostuk, "Volume holographic phase retardation elements," Opt. Lett. 20, 2030-2032 (1995).
[CrossRef] [PubMed]

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Levy, U.

Li, L.

L. Li, "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A 20, 655-660 (2003).
[CrossRef]

L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
[CrossRef]

L. Li, "A modal analysis of lamellar diffraction gratings in conical mountings," J. Mod. Opt. 40, 553-573 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Liu, F.

Liu, H.-T.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Liu, X.

Lu, S.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Macleod, H. A.

Mizutani, A.

Nezhad, M.

Nordin, G. P.

Ohira, Y.

Pang, L.

Preist, T. W.

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, "Broadband polarization-converting mirror for the visible region of the spectrum," Opt. Lett. 27, 2152-2154 (2002).
[CrossRef]

R. A. Watts and J. R. Sambles, "Reflection grating as polarization converters," Opt. Commun. 140, 179-183 (1997).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
[CrossRef]

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

Satoh, K.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

Scherer, A.

Sciortino, P. F.

Shechter, R.

Streibl, N.

Sun, P.-C.

Susuki, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Tsai, C.-H.

Tyan, R.-C.

Wang, J. J.

Watts, R. A.

R. A. Watts and J. R. Sambles, "Reflection grating as polarization converters," Opt. Commun. 140, 179-183 (1997).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Wyrowski, F.

V. Kettunen and F. Wyrowski, "Reflection-mode phase retardation by dielectric gratings," Opt. Commun. 158, 41-44 (1998).
[CrossRef]

Xu, F.

Yan, Y.-B.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Yi, D.-E.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Yotsuya, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

Yu, W.

W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, "Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure," Appl. Opt. 45, 2601-2606 (2006).
[CrossRef] [PubMed]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (1)

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics," Appl. Phys. Lett. 42, 492-494 (1983).
[CrossRef]

J. Mod. Opt. (3)

L. Li, "A modal analysis of lamellar diffraction gratings in conical mountings," J. Mod. Opt. 40, 553-573 (1993).
[CrossRef]

C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, "Lamellar gratings as polarization components for specularly reflected beams," J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, "Polarisation conversion through the excitation of surface plasmons on a metallic grating," J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

J. Opt. Soc. Am. A (3)

Y.-L. Kok and N. C. Gallagher, Jr., "Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating," J. Opt. Soc. Am. A 40, 65-73 (1988).
[CrossRef]

L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
[CrossRef]

L. Li, "Note on the S-matrix propagation algorithm," J. Opt. Soc. Am. A 20, 655-660 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, "Synthesis of wave plates using multilayered subwavelength structure," Jpn. J. Appl. Phys. 43, L439-L441 (2004).
[CrossRef]

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, "Fabrication of half-wave plates with subwavelength structures," Jpn. J. Appl. Phys. 43, 5294-5296 (2004).
[CrossRef]

Opt. Commun. (3)

V. Kettunen and F. Wyrowski, "Reflection-mode phase retardation by dielectric gratings," Opt. Commun. 158, 41-44 (1998).
[CrossRef]

R. A. Watts and J. R. Sambles, "Reflection grating as polarization converters," Opt. Commun. 140, 179-183 (1997).
[CrossRef]

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F. Jin, "Broadband achromatic phase retarder by subwavelength grating," Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (2)

S. J. Elston, G. P. Bryan-Brown, T. W. Preist, and J. R. Sambles, "Surface resonance polarization conversion mediated by broken surface symmetry," Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, "Polarization conversion from diffraction gratings," Phys. Rev. B 44, 6393-6400 (1991).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

In this paper TE and TM refer to polarization components in and perpendicular to the plane defined by incident and reflected waves, not to the entire grating-diffraction geometry in which the TE/TM decomposition is not valid because of coupling of electric-field components in the grating owing to conical incidence.

CRC Handbook of Chemistry and Physics, 64th ed. (CRC, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Diffraction geometry for an incident plane wave linearly polarized at an angle ψ from the plane of incidence at a binary surface-relief grating.

Fig. 2
Fig. 2

(Color online) Reflectance of the TM component compared with the incident purely TE-polarized field amplitude as a function of the thickness h and the conical angle ϕ. (a) Dielectric grating with n = 2.3 ; there are two zones with different values of ϕ providing total conversion. (b) Metallic case calculated for gold; only one zone appears, in which maximum conversion takes place. The curves are plotted for d = 250   nm and f = 0.3 .

Fig. 3
Fig. 3

Required thickness h as a function of the fill factor f (solid curve and squares) of a dielectric grating ( n 1 = 2.0 ) to achieve full polarization conversion, with the corresponding azimuthal angle ϕ (dashed curve with circles).

Fig. 4
Fig. 4

Same as Fig. 3, but with n 1 = 2.3 .

Fig. 5
Fig. 5

Required thickness for three different metallic gratings to achieve a full conversion from TE- to TM-polarized light.

Fig. 6
Fig. 6

Reflectance of TM-polarized light corresponding to the required thickness for three different metallic gratings to achieve a full TE to TM conversion. Contrary to dielectric gratings, the TM reflectance is not equal to unity due to absorption.

Fig. 7
Fig. 7

(Color online) Reflectance of TM (solid curves) and TE (dotted curves) polarized light for three dielectric gratings with different fill factors as a function of the wavelength. The refractive index is approximately 2.0 at λ = 633   nm , ϕ = 65 ° , d = 250   nm .

Fig. 8
Fig. 8

(Color online) Same as Fig. 7, but with n 1 2.3 at λ = 633   nm , and d = 200   nm .

Fig. 9
Fig. 9

(Color online) Spectral reflectance for TM (solid curve) and TE (dotted curve) polarized light for silver, aluminum, and gold gratings with d = 200   nm . Silver: ϕ = 55 ° , f = 0.265 , h = 306   nm ; aluminum: ϕ = 55 ° , f = 0.294 , h = 302   nm ; gold: ϕ = 54 ° , f = 0.325 , h = 302   nm .

Tables (2)

Tables Icon

Table 1 Optimal Parameters (with d = 250 nm) for Full TE to TM Polarization Conversion and the Associated Conversion Efficiencies

Tables Icon

Table 2 Fabrication and Characterization Tolerances for the Structures of Table 1 a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d s w l = λ / n I sin θ cos ϕ + ( 1 sin 2 θ sin 2 ϕ ) 1 / 2 .

Metrics