Abstract

One of the major medical applications of optoacoustic (OA) tomography is in the diagnostics of early-stage breast cancer. A numerical approach was developed to characterize the following parameters of an OA imaging system: resolution, maximum depth at which the tumor can be detected, and image contrast. The parameters of the 64-element focused array transducer were obtained. The results of numerical modeling were compared with known analytical solutions and further validated by phantom experiments. The OA images of a 3  mm piece of bovine liver immersed in diluted milk at various depths were obtained. Based on the results of modeling, a signal filtering algorithm for OA image contrast enhancement has been proposed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, G. Stoica, and L. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005).
    [CrossRef] [PubMed]
  2. R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
    [CrossRef] [PubMed]
  3. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef] [PubMed]
  4. G. Ku, X. Wang, X. Xie, G. Stoica, and L. Wang, "Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography," Appl. Opt. 44, 770-775 (2005).
    [CrossRef] [PubMed]
  5. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
    [CrossRef] [PubMed]
  6. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
    [CrossRef] [PubMed]
  7. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
    [CrossRef] [PubMed]
  8. B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
    [CrossRef] [PubMed]
  9. G. Ku and L. V. Wang, "Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent," Opt. Lett. 30, 507-509 (2005).
    [CrossRef] [PubMed]
  10. V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).
  11. K. P. Kostli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001).
    [CrossRef]
  12. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
    [CrossRef] [PubMed]
  13. P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
    [CrossRef] [PubMed]
  14. P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).
  15. R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
    [CrossRef]
  16. J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
    [CrossRef]
  17. G. Paltauf, "Dual-wavelength optoacoustic imaging," in Novel Optical Instrumentation for Biomedical Applications, A.-C.Boccara, ed., Proc. SPIE 5143, 41-49 (2003).
  18. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
    [CrossRef] [PubMed]
  19. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
    [CrossRef] [PubMed]
  20. A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).
  21. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
    [CrossRef]
  22. V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
    [CrossRef] [PubMed]
  23. A. Oraevsky and A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 228-239 (2000).
  24. A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
    [CrossRef]
  25. A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).
  26. V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).
  27. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  28. F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, 1990).
  29. V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).
  30. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
    [CrossRef] [PubMed]
  31. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  32. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
    [PubMed]
  33. A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002).
    [CrossRef] [PubMed]
  34. Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
    [CrossRef] [PubMed]
  35. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).
  36. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
    [CrossRef] [PubMed]
  37. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
    [CrossRef] [PubMed]
  38. ANSI Standard Z136.3-2005, "Safe use of lasers in health care facilities."
  39. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  40. R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
    [CrossRef] [PubMed]
  41. Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001).
    [CrossRef] [PubMed]
  42. M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005).
    [CrossRef]
  43. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
    [CrossRef] [PubMed]
  44. A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
    [CrossRef]
  45. I. Patrikeyev and A. A. Oraevsky, "Multiresolution reconstruction method to optoacoustic imaging," in Biomedical Optoacoustics IV, A.A.Oraevsky, ed., Proc. SPIE 4960, 99-105 (2003).

2005

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. Wang, "Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography," Appl. Opt. 44, 770-775 (2005).
[CrossRef] [PubMed]

G. Ku and L. V. Wang, "Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent," Opt. Lett. 30, 507-509 (2005).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

2004

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

2003

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

2002

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002).
[CrossRef] [PubMed]

2001

V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).

P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).

K. P. Kostli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001).
[CrossRef]

Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001).
[CrossRef] [PubMed]

2000

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
[CrossRef] [PubMed]

1999

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

1995

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1993

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

1977

V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).

Aleynikov, V. L.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Andersson-Engels, S.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

Andreev, V. G.

V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Bain, C. J.

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

Bassi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).

Buma, T.

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

Cerussi, A.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
[CrossRef] [PubMed]

Chen, Q.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Conant, E.

Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Cummings, M. C.

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

D'Andrea, C.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

de Mul, F.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

de Mul, F. F. M.

Duck, F. A.

F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, 1990).

Durduran, T.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).

Fedyk, A.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Fleming, R. D.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Frenz, M.

Furnival, C. M.

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

Hamilton, J.

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Hondebrink, E.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Hopman, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

Inkov, V. N.

V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Jacques, S. L.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Karabutov, A.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

A. Oraevsky and A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 228-239 (2000).

Karabutov, A. A.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Khokhlova, T.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

Khokhlova, T. D.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Klaessens, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

Kolkman, R.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Kolkman, R. G. M.

Kostli, K. P.

Kozhushko, V.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

Kozhushko, V. V.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Ku, G.

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Letokhov, V. S.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

Malinsky, T. V.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Marinelli, A. W. K. S.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

Maslov, K.

Menke-Pluymers, M.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

Mills, T. N.

P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).

O'Donnell, M.

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

Oraevsky, A.

A. Oraevsky and A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 228-239 (2000).

Oraevsky, A. A.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

I. Patrikeyev and A. A. Oraevsky, "Multiresolution reconstruction method to optoacoustic imaging," in Biomedical Optoacoustics IV, A.A.Oraevsky, ed., Proc. SPIE 4960, 99-105 (2003).

Paltauf, G.

K. P. Kostli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001).
[CrossRef]

G. Paltauf, "Dual-wavelength optoacoustic imaging," in Novel Optical Instrumentation for Biomedical Applications, A.-C.Boccara, ed., Proc. SPIE 5143, 41-49 (2003).

Pang, Y.

Patrikeyev, I.

I. Patrikeyev and A. A. Oraevsky, "Multiresolution reconstruction method to optoacoustic imaging," in Biomedical Optoacoustics IV, A.A.Oraevsky, ed., Proc. SPIE 4960, 99-105 (2003).

Pelivanov, I.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

Pelivanov, I. M.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

Pifferi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Podymova, N. B.

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

Quinn, C. M.

A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

Rice, A.

A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002).
[CrossRef] [PubMed]

Rudenko, O. V.

V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).

Savateeva, E. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Schmidt-Kloiber, H.

Shah, N.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Siphanto, R. I.

Skipetrov, S. E.

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

Solomatin, S. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Solomatin, V.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

Solomatin, V. S.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

Spisar, M.

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

Steenbergen, W.

R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Sterenborg, H. J. C. M.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

Stoica, G.

Swartling, J.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

Tan, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Taroni, P.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Thijssen, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

Thumma, K. K.

Torricelli, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Tromberg, B. J.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Valentini, G.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

van Adrichem, L. N. A.

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

van Leeuwen, T.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

van Neck, J. W.

van Veen, R. L. P.

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

Wang, L.

Wang, L. V.

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wang, L.-V.

M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005).
[CrossRef]

Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Webb, P. M.

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

Weber, H. P.

Xie, X.

Xing, D.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005).
[CrossRef]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001).
[CrossRef] [PubMed]

Yin, B.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Zeng, Y.

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

Zharinov, A.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

Zharinov, A. N.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
[CrossRef] [PubMed]

Zhulinc, Y. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Acoust. Phys.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Wideband focused film transducer for optoacoustic tomography," Acoust. Phys. 49, 682-687 (2003).
[CrossRef]

Appl. Opt.

Biomedical Optoacoustics II, Proc. SPIE

P. C. Beard and T. N. Mills, "2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom," in Biomedical Optoacoustics II, Proc. SPIE 4256, 34-42 (2001).

Breast

P. M. Webb, M. C. Cummings, C. J. Bain, and C. M. Furnival, "Changes in survival after breast cancer: improvements in diagnosis or treatment?" Breast 13, 7-14 (2004).
[CrossRef] [PubMed]

Breast Cancer Res. Treat.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, and A. Fedyk, "Diffuse optics in breast cancer: detection in premenopausal women, coregistration with MRI, and monitoring neoadjuvant chemotherapy," Breast Cancer Res. Treat. 7, 279-285, (2005).

Comput. Methods Programs Biomed.

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML--Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

R. Kolkman, E. Hondebrink, W. Steenbergen, and F. de Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumours," IEEE J. Sel. Top. Quantum Electron. 5, 981-988 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferro-electr. Freq. Control

J. Hamilton, T. Buma, M. Spisar, and M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferro-electr. Freq. Control 47, 160-170 (2000).
[CrossRef]

J. Acoust. Soc. Am.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for 2D optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

Q. Zhu, E. Conant, and B. Chance, "Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions," J. Biomed. Opt. 5, 229-236 (2000).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, "Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances," J. Biomed. Opt. 9, 1143-1151 (2004).
[CrossRef] [PubMed]

R. L. P. van Veen, H. J. C. M. Sterenborg, A. W. K. S. Marinelli, and M. Menke-Pluymers, "Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography," J. Biomed. Opt. 9, 1129-1136 (2004).
[CrossRef] [PubMed]

J. Clin. Pathol.

A. Rice and C. M. Quinn, "Angiogenesis, thrombospodin, and ductal carcinoma in situ of the breast," J. Clin. Pathol. 55, 569-574 (2002).
[CrossRef] [PubMed]

Laser Phys.

A. N. Zharinov, A. A. Karabutov, V. V. Kozhushko, I. M. Pelivanov, V. S. Solomatin, and T. D. Khokhlova, "Spatial resolution of a focused array transducer for laser optoacoustic tomography," Laser Phys. 14, 106-112 (2004).

V. N. Inkov, A. A. Karabutov, and I. M. Pelivanov, "A theoretical model of the linear thermo-optical response of an absorbing particle immersed in a liquid," Laser Phys. 11, 1283-1291 (2001).

Lasers Surg. Med.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, and T. V. Malinsky, "Studies of acoustical and shock waves in the pulsed laser ablation of biotissue," Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef] [PubMed]

Med. Phys.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography--technical consideration," Med. Phys. 26, 1832-1837 (1999).
[CrossRef] [PubMed]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Y. Xu and L.-V. Wang, "Signal processing in scanning thermoacoustic tomography in biological tissues," Med. Phys. 28, 1519-1524 (2001).
[CrossRef] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Moscow Univ. Phys. Bull.

V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, "Method for calibration of the wideband hydrophones in ultrasonic beams of finite amplitude," Moscow Univ. Phys. Bull. 39, 88-91 (1977).

Opt. Express

Opt. Lett.

Photochem. Photobiol.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Photochem. Photobiol. Sci.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-132 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, "Bulk optical properties of healthy female breast tissue," Phys. Med. Biol , 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, "Fast photoacoustic imaging system based on 320-element linear transducer array," Phys. Med. Biol. 49, 1339-1346 (2004).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, "Photoacoustic determination of blood vessel diameter," Phys. Med. Biol. 49, 4745-4756 (2004).
[CrossRef] [PubMed]

Phys. Rev. E

M. Xu and L.-V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E 71, 1-7 (2005).
[CrossRef]

Quantum Electron.

A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, S. E. Skipetrov, "Determination of the optical characteristics of turbid media by the laser optoacoustic method," Quantum Electron. 29, 1054-1060 (1999).
[CrossRef]

Other

I. Patrikeyev and A. A. Oraevsky, "Multiresolution reconstruction method to optoacoustic imaging," in Biomedical Optoacoustics IV, A.A.Oraevsky, ed., Proc. SPIE 4960, 99-105 (2003).

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. L. Aleynikov, Y. V. Zhulinc, R. D. Fleming, and A. A. Oraevsky, "Optoacoustic tomography of breast cancer with arc-array transducer," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 36-47 (2000).

ANSI Standard Z136.3-2005, "Safe use of lasers in health care facilities."

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, and R. O. Esenaliev, "Two-Dimensional optoacoustic tomography transducer array and image reconstruction algorithm," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S.L.Jacques, G.J.Mueller, A.Roggan, and D.H.Sliney, eds., Proc. SPIE 3601,256-267 (1999).

G. Paltauf, "Dual-wavelength optoacoustic imaging," in Novel Optical Instrumentation for Biomedical Applications, A.-C.Boccara, ed., Proc. SPIE 5143, 41-49 (2003).

A. Oraevsky and A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics, A.A.Oraevsky, ed., Proc. SPIE 3916, 228-239 (2000).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the focused wideband array transducer for OA tomography.

Fig. 2
Fig. 2

Numerically calculated (curve) and analytically derived (symbol) OA signals from an absorbing plane with μ a = 100 cm 1 and rigid acoustic boundary. Radius of Gaussian laser beam a 0 = 1.5   cm . The observation point was located at different distances from the plane: 1   mm (solid curve and open circles), 10   cm (thin curve and crosses), and 50   cm (dashed curve and filled circles).

Fig. 3
Fig. 3

Arrangement of the focused hydrophone, laser beam, and the absorber used in numerical modeling.

Fig. 4
Fig. 4

Numerically calculated background signals for different depths of the hydrophone focus location: 2   cm (thick curve), 4   cm (thin curve), and 6   cm (dashed curve). The OA signal from a spherical 1 cm absorber is shown at the bottom of the frame.

Fig. 5
Fig. 5

Normalized spectra of the background signal (solid curve), the OA signal from 3   mm (thin curve), and 1 cm (dotted curve) absorbers and Gaussian filter (dashed curve) used for signal processing.

Fig. 6
Fig. 6

Numerically calculated maximum imaging depths for spherical absorbers of various 3–10 mm diameters. Optical properties of the absorbers used in modeling are listed in Table 1.

Fig. 7
Fig. 7

OA images of the spherical absorbers of (a), (b) 3   mm , (c), (d) 5   mm , and (e), (f) 10   mm reconstructed using numerically calculated (a), (c), (e) unprocessed and (b), (d), (f) filtered signals from the absorber and from the background.

Fig. 8
Fig. 8

Experimental arrangement used for phantom studies (top). Breast tissue containing a tumor was modeled by a 3   mm piece of bovine liver (bottom) immersed in diluted milk. Optical properties of the media at a laser wavelength of 1064   nm are listed in Table 2.

Fig. 9
Fig. 9

OA signals detected by a single focused hydrophone: (a) unprocessed (thin curve) and filtered (solid curve) total OA signal from a 3   mm piece of bovine liver immersed in diluted milk, (b) OA signal from the piece of liver (solid curve, numerical simulation; thin curve, experimental data), (c) background signal from diluted milk (solid curve, numerical simulation; thin curve, experimental data).

Fig. 10
Fig. 10

OA images of the piece of bovine liver immersed in diluted milk (a) at 2   cm and (b) 4   cm below the irradiated surface.

Tables (2)

Tables Icon

Table 1 Optical and Acoustical Properties of Healthy and Cancerous Breast Tissue Used in Numerical Modeling

Tables Icon

Table 2 Optical Properties of the Phantom Media Used in Experimental Studies a

Equations (116)

Equations on this page are rendered with MathJax. Learn more.

3   mm
( 3 10   mm )
110   μm
( δ Y )
δ X
δ Z
p ( r , t ) = Γ 2 π c 0 2 V t [ Q ( r ) δ ( t | r r | c 0 ) ] | r r |  d V ,
Γ = β c 0 2 / 2 c p
c 0
c p
Q ( r )
V
Δ x
p voxel ( τ = t | r r | c 0 ) = { Γ Q | r r | ( c 0 τ ) , | c 0 τ | Δ x 2 0 , | c 0 τ | > Δ x 2 .
p ( τ = t | r r | c 0 ) = p voxel ( τ ) .
μ a = 100 cm 1
μ a 1
a 0 = 1.5 cm
μ a 1
p D F ( τ ) = μ a E 0 Γ × { exp ( ω a τ ) 1 + D , τ < 0 R a c ( exp ( ω a τ ) D 1 2 D exp ( ω D F τ ) D 2 1 ) , τ > 0 .
R a c = 0.86
E 0 = 20   mJ / cm 2
c 0 = 1.5   mm / μs
ω D F = 2 c 0 x / a 0 2
ω a = μ a c 0
D = ω D F / ω a
D 1
x = 1   mm
D > 1
x = 10   cm
( x = 50   cm )
p a v e r a g e d ( t ) = Γ 2 π c 0 2 S V Q ( r ) δ ( t | r r | c 0 ) | r r | d V d S ,
r
p r e s p ( t )
p a v e r a g e d ( t )
p r e s p ( t )
U ( t ) = p a v e r a g e ( t ) p r e s p ( t ) .
110   μm
δ Z
δ X
δ Y
δ Y
δ Y
2   mm
2   cm × 2   cm
( 0 2   MHz )
15   μV / Pa
μ a
μ s
755   nm
μ a
μ s
μ s
μ a
755   nm
32   mJ / cm 2
μ eff 1 = 1 / 3 μ a μ s
3   cm
200   mJ
10   mm
1   cm
Q ( r ) = E 0 μ a ( exp [ μ eff ( a + r ) ] + exp [ μ eff ( a r ) ] ) ,
E 0
μ eff
α = a f b
10   mm
6   cm
3   cm
2   cm × 2   cm
50   μs
3   cm
3   cm
3   mm
Filt ( f ) = 1 exp [ ( f f min ) 2 ] ,
f min = 100   kHz
5   mm
1   cm
N 1 / 2
N = 64
10   mm
3   mm
2.5   cm
3.3   cm
t ( p / t )
l = c 0 t
10   mm
3   cm
5   mm
9   mJ / cm 2
( 3   mm )
750   nm
2   cm
3.3   cm
( > 5   mm )
1   cm
3.3   cm
( 2   mm )
4   cm
μ eff = 3 μ a μ s , cm 1
μ a = 100 cm 1
a 0 = 1.5   cm
1   mm
10   cm
50   cm
2   cm
4   cm
6   cm
3   mm
3   mm
5   mm
10   mm
3   mm
1064   nm
3   mm
2   cm
4   cm

Metrics