Abstract

A dynamic light scattering (DLS) experimental system has been set up to study the influence of the sampling rate on the precision of monodispersed particle sizing. Several different parameters relating to the measurement, such as the sampling rate, the number of the correlation channels, the storage depth, and the lag time, are selected to execute the DLS measurement. The experimental results obtained in different cases are reported, and the influences of the sampling rate on particle sizing are also discussed. From the results and discussion it can be seen that the sampling rate plays an important role in the measurement of the particle size. The variety of the sampling rate can lead to the presentation of different correlation functions and then different precision levels for the particle size. In conclusion, a suitable sampling rate is presented to direct the measurement of test particle size.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).
  2. A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
    [CrossRef] [PubMed]
  3. M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).
  4. R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
    [CrossRef]
  5. G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
    [CrossRef] [PubMed]
  6. G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
    [CrossRef] [PubMed]
  7. H. Ruf, "Data accuracy and resolution in particle sizing by dynamic light-scattering," Adv. Colloid Interface Sci. 46, 333-342 (1993).
    [CrossRef]
  8. D. Maier, M. Marth, J. Honerkamp, and J. Weese, "Influence of correlated errors on the estimation of the relaxation time spectrum in dynamic light scattering," Appl. Opt. 38, 4671-4680 (1999).
    [CrossRef]
  9. H. Ruf, "The effect of nonrandom errors on the results from regularized inversions of dynamic light scattering data," Langmuir 16, 471-480 (2000).
    [CrossRef]
  10. H. Ruf, "Treatment of contributions of dust to dynamic light scattering data," Langmuir 18, 3804-3814 (2002).
    [CrossRef]
  11. D. Magatti and F. Ferri, "Fast multi-tau real-time software correlator for dynamic light scattering," Appl. Opt. 40, 4011-4021 (2001).
    [CrossRef]
  12. M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.
  13. N. C. Santos and M. A. R. B. Castanho, "Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus," Biophys. J. 71, 1641-1646 (1996).
    [CrossRef] [PubMed]

2005 (3)

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

2002 (1)

H. Ruf, "Treatment of contributions of dust to dynamic light scattering data," Langmuir 18, 3804-3814 (2002).
[CrossRef]

2001 (1)

2000 (1)

H. Ruf, "The effect of nonrandom errors on the results from regularized inversions of dynamic light scattering data," Langmuir 16, 471-480 (2000).
[CrossRef]

1999 (1)

1996 (1)

N. C. Santos and M. A. R. B. Castanho, "Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus," Biophys. J. 71, 1641-1646 (1996).
[CrossRef] [PubMed]

1993 (1)

H. Ruf, "Data accuracy and resolution in particle sizing by dynamic light-scattering," Adv. Colloid Interface Sci. 46, 333-342 (1993).
[CrossRef]

1992 (1)

G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
[CrossRef] [PubMed]

Amiconi, G.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Arcovito, G.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Bellelli, A.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Boumis, G.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Capozzi, V.

G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
[CrossRef] [PubMed]

Castanho, M. A. R. B.

N. C. Santos and M. A. R. B. Castanho, "Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus," Biophys. J. 71, 1641-1646 (1996).
[CrossRef] [PubMed]

Dias, R. S.

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

Engels, M.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.

Ferri, F.

Glatter, O.

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

Honerkamp, J.

Hoppe, B.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.

Ida, R.

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

Innerlohinger, J.

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

Jussila, M.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Lindman, B.

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

Lorusso, G. F.

G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
[CrossRef] [PubMed]

Magatti, D.

Maier, D.

Marth, M.

Meuth, H.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.

Miguel, M. G.

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

Minafra, A.

G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
[CrossRef] [PubMed]

Nuopponen, M.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Papi, M.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Pecora, R.

R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).

Peters, R.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.

Riekkola, M. L.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Ruf, H.

H. Ruf, "Treatment of contributions of dust to dynamic light scattering data," Langmuir 18, 3804-3814 (2002).
[CrossRef]

H. Ruf, "The effect of nonrandom errors on the results from regularized inversions of dynamic light scattering data," Langmuir 16, 471-480 (2000).
[CrossRef]

H. Ruf, "Data accuracy and resolution in particle sizing by dynamic light-scattering," Adv. Colloid Interface Sci. 46, 333-342 (1993).
[CrossRef]

Santos, N. C.

N. C. Santos and M. A. R. B. Castanho, "Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus," Biophys. J. 71, 1641-1646 (1996).
[CrossRef] [PubMed]

Shan, J.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Spindler, L.

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

Spirito, M. D.

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

Tenhu, H.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Weese, J.

Wong, A.

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

Wu, G.

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

Yohannes, G.

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

H. Ruf, "Data accuracy and resolution in particle sizing by dynamic light-scattering," Adv. Colloid Interface Sci. 46, 333-342 (1993).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

N. C. Santos and M. A. R. B. Castanho, "Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus," Biophys. J. 71, 1641-1646 (1996).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. Wong, R. Ida, L. Spindler, and G. Wu, "Disodium guanosine 5′-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study," J. Am. Chem. Soc. 127, 6990-6998 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

R. S. Dias, J. Innerlohinger, O. Glatter, M. G. Miguel, and B. Lindman, "Coil-globule transition of DNA molecules induced by cationic surfactants: A dynamic light scattering study," J. Phys. Chem. B 109, 10458-10463 (2005).
[CrossRef]

J. Sep. Sci. (1)

G. Yohannes, J. Shan, M. Jussila, M. Nuopponen, H. Tenhu, and M. L. Riekkola, "Characterisation of poly(N-isopropylacrylamide) by asymmetrical flow field-flow fractionation, dynamic light scattering, and size exclusion chromatography," J. Sep. Sci. 28, 435-442 (2005).
[CrossRef] [PubMed]

Langmuir (2)

H. Ruf, "The effect of nonrandom errors on the results from regularized inversions of dynamic light scattering data," Langmuir 16, 471-480 (2000).
[CrossRef]

H. Ruf, "Treatment of contributions of dust to dynamic light scattering data," Langmuir 18, 3804-3814 (2002).
[CrossRef]

Phys. Rev. A (1)

G. F. Lorusso, V. Capozzi, and A. Minafra, "Experimental analysis of the noise in photon-correlation and photon-structure functions," Phys. Rev. A 45, R3391-R3393 (1992).
[CrossRef] [PubMed]

Other (3)

M. Papi, G. Arcovito, M. D. Spirito, G. Amiconi, A. Bellelli, and G. Boumis, "Simultaneous static and dynamic light scattering approach to the characterization of the different fibrin gel structures occurring by changing chloride concentration," Appl. Phys. Lett. 86, 183901 (2005).

M. Engels, B. Hoppe, H. Meuth, and R. Peters, "Fast digital photon correlation system with high dynamic range," in Proceedings of the 13th Annual IEEE International ASIC/SOC Conference (IEEE, 2000), pp. 18-22.

R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic showing the experimental setup for DLS with analog detection.

Fig. 2
Fig. 2

Varieties of the normalized autocorrelation function of the light intensity scattered with the increasing sampling rate under the conditions of fixed storage depth (256 kbyte) and fixed number of correlation channels (1000 channels).

Fig. 3
Fig. 3

Varieties of the normalized autocorrelation function of the light intensity scattered with the increasing sampling rate under the conditions of fixed storage depth (256 kbyte) and fixed maximum lag time ( 500 μs ) .

Fig. 4
Fig. 4

Varieties of the normalized autocorrelation function of the light intensity scattered with the increasing sampling rate under the conditions of fixed measuring time (5.2 ns) and fixed maximum lag time ( 250 μs ) .

Fig. 5
Fig. 5

Varieties of the error in particle size with increasing sampling rates in different parameter settings. The solid curve shows the errors in the particle size in the case of fixed storage depth and fixed numbers of correlation channels, which corresponds to the correlation functions in Fig. 2. Similarly, the dashed curve shows the errors in the particle size in the case of fixed storage depth and fixed maximum lag time, which corresponds to the correlation functions in Fig. 3. The dotted curve shows the errors in the particle size in the case of fixed measuring time and fixed maximum lag time, which corresponds to the correlation functions in Fig. 4.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = I ( t ) I ( t + τ ) = lim T 1 T 0 T I ( t ) I ( t + τ ) d t ,
G ( τ k ) = V i V i + k = lim N 1 N i = 1 N V i V i + k ,
G ( τ k ) = lim N 1 N i = 1 N [ V ˜ i V ˜ i + k + ( δ i V ˜ i + k + δ i + k V ˜ i ) + δ i δ i + k ] .
g 2 ( τ ) = I ( t ) I ( t + τ ) I ( t ) 2 = 1 + exp ( 2 Γ τ ) .
1 + exp ( 2 Γ τ ) = 1 + exp ( 2 Γ 0 τ ) + lim N 1 N i = 1 N δ i V ˜ i + k + δ i + k V ˜ i V ˜ i 2 .
1 r = 1 r 0 3 π η τ q 2 K B T ln ( i = 1 N δ i V ˜ i + k + δ i + k V ˜ i N V ˜ i 2 ) .
Δ r = r r 0 = 3 π η A r 0 2 τ q 2 K B T 3 π η A r 0 .
A = ln ( i = 1 N δ i V ˜ i + k + δ i + k V ˜ i N V ˜ i 2 ) .
G ( τ ) = I t 2 β exp ( 2 Γ τ ) + I t 2 + Δ ,

Metrics