Abstract

We analyze the mechanisms leading to a highly diffractive fixed hologram in photorefractive Fe-doped lithium niobate crystals by simultaneous self-stabilized holographic recording and compensation at moderately high temperatures. We show that a partially compensated running hologram is produced during recording under this condition and discuss the performance of the process in terms of the operating temperature, the degree of oxidation ([Fe3+]/[Fe2+] ratio) of the sample, and the effect of the absorption grating arising from the spatial modulation of the Fe2+ concentration produced during photorefractive recording. We experimentally measure the evolution of the uncompensated remaining hologram during recording and the evolution of the diffraction efficiency of the fixed hologram during white-light development and show that the maximum fixed grating modulation to be achieved is roughly limited by Fe-dopant saturation. A reproducible η66% efficiency fixed grating was obtained on a sample exhibiting an otherwise maximum fixed η3% when using the classical three-step (recording at room temperature—compensating at high temperature—developing at room temperature) process.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Amodei and D. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
    [CrossRef]
  2. M. Carrascosa and F. Agullo-Lopez, "Theoretical modelling of the fixing and developing of holographic gratings in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
    [CrossRef]
  3. A. Yariv and S. S. Orlov, "Holographic storage dynamics in lithium niobate: theory and experiment," J. Opt. Soc. Am. B 13, 2513-2523 (1996).
    [CrossRef]
  4. A. Méndez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate," Opt. Mater. 10, 55-59 (1998).
    [CrossRef]
  5. E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000).
    [CrossRef]
  6. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals," Opt. Lett. 28, 1040-1042 (2003).
    [CrossRef] [PubMed]
  7. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
    [CrossRef]
  8. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
    [CrossRef]
  9. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
    [CrossRef]
  10. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
    [CrossRef]
  11. J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
    [CrossRef]
  12. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  13. M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
    [CrossRef]
  14. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).
  15. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
    [CrossRef]
  16. I. de Oliveira and J. Frejlich, "Diffraction efficiency measurement in photorefractive thick volume holograms," J. Opt. A 5, S428-S431 (2003).
    [CrossRef]
  17. A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart, and Winston, 1985).
  18. Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.
  19. I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
    [CrossRef]
  20. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1988).

2005 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

2004 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

2003 (2)

2002 (1)

M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

2000 (2)

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

1998 (3)

A. Méndez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate," Opt. Mater. 10, 55-59 (1998).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

1981 (1)

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

1971 (1)

J. Amodei and D. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Agullo-Lopez, F.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

M. Carrascosa and F. Agullo-Lopez, "Theoretical modelling of the fixing and developing of holographic gratings in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
[CrossRef]

Amodei, J.

J. Amodei and D. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Arizmendi, L.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals," Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000).
[CrossRef]

A. Méndez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate," Opt. Mater. 10, 55-59 (1998).
[CrossRef]

Barbosa, M.

M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

Breer, S.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Buse, K.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.

Carrascosa, M.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals," Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

M. Carrascosa and F. Agullo-Lopez, "Theoretical modelling of the fixing and developing of holographic gratings in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
[CrossRef]

de Oliveira, I.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals," Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

I. de Oliveira and J. Frejlich, "Diffraction efficiency measurement in photorefractive thick volume holograms," J. Opt. A 5, S428-S431 (2003).
[CrossRef]

M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Frejlich, J.

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals," Opt. Lett. 28, 1040-1042 (2003).
[CrossRef] [PubMed]

I. de Oliveira and J. Frejlich, "Diffraction efficiency measurement in photorefractive thick volume holograms," J. Opt. A 5, S428-S431 (2003).
[CrossRef]

M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, "Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials," J. Opt. Soc. Am. B 14, 1741-1749 (1997).
[CrossRef]

Garcia, P. M.

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Günter, P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1988).

Huignard, J. P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1988).

Kapphan, S.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Limeres, J.

E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

Méndez, A.

A. Méndez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate," Opt. Mater. 10, 55-59 (1998).
[CrossRef]

Miguel, E. M.

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

Nee, I.

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.

Orlov, S. S.

Peithmann, K.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Psaltis, D.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Ringhofer, K. H.

Shamonina, E.

Staebler, D.

J. Amodei and D. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

Vogt, H.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Yang, Y.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.

Yariv, A.

Appl. Phys. A (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods," Appl. Phys. A 12, 355-368 (1977).

Appl. Phys. Lett. (1)

J. Amodei and D. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Appl. Phys. (1)

I. Nee, M. Müller, K. Buse, and E. Krätzig, "Role of iron in lithium-niobate crystals for the dark-storage time of holograms," J. Appl. Phys. 88, 4282-4286 (2000).
[CrossRef]

J. Opt. A (1)

I. de Oliveira and J. Frejlich, "Diffraction efficiency measurement in photorefractive thick volume holograms," J. Opt. A 5, S428-S431 (2003).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (3)

M. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique," Opt. Commun. 247, 39-48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, "Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals," Opt. Commun. 229, 371-380 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

A. Méndez and L. Arizmendi, "Maximum diffraction efficiency of fixed holograms in lithium niobate," Opt. Mater. 10, 55-59 (1998).
[CrossRef]

Phys. Rev. B (1)

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, "Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals," Rev. Sci. Instrum. 69, 1591-1594 (1998).
[CrossRef]

Solid State Commun. (1)

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Other (3)

A. Yariv, Optical Electronics, 3rd international ed. (Holt, Rinehart, and Winston, 1985).

Y. Yang, I. Nee, K. Buse, and D. Psaltis, "Mechanism of dark decay of holograms in lithium niobate crystals," in Photorefractive Effects, Materials and Devices,D. D. Nolte, G. J. Salamo, A. Siahmakoun, and S. Stepanov, eds., Vol. 62 of Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 144-151.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Input 514.5 nm wavelength laser beam is divided into two by the beam splitter BS. The piezoelectric-supported mirror PZT that is fed from the oscillator OSC produces the phase modulation and the necessary phase corrections during recording; I S Ω and I S 2 Ω are detected in the irradiance behind the crystal using adequately tuned (to Ω and 2Ω, respectively) lock-in amplifiers. The I S 2 Ω term is used as the error signal in the feedback loop. The spatial period is Δ 0.63 μ m , the wavelength is λ = 514.5 nm with I S 0 + I R 0 = 16 mW / cm 2 and I S 0 / I R 0 1 .

Fig. 2
Fig. 2

(Color online) Experimental setup: S, massive copper cylinder with a temperature-controlled heating element in direct thermal contact with the copper holder H supporting and surrounding the sample C. A thin Pyrex glass cylinder W to minimize heat losses and thermal convection, around the sample, allows for the laser beams L to go through. A flat heat-isolating plate (not seen) covers the upper cylinder side.

Fig. 3
Fig. 3

Photodetector signal ( μ V ) proportional to the diffracted probe ( λ = 633 nm ) beam intensity during simultaneous recording and compensation at 150 ° C .

Fig. 4
Fig. 4

(Color online) Photodetector signal ( μ V ) proportional to the diffracted probe ( λ = 633 nm ) beam intensity during simultaneous recording and compensation at 120 ° C . The sudden drop at t = 70 min corresponds to full compensation after switching off the recording beams.

Fig. 5
Fig. 5

(Color online) Evolution of I Ω and I 2 Ω during high-temperature self-stabilized holographic recording (and compensation) for a typical experiment.

Fig. 6
Fig. 6

Diffraction efficiency of the overall grating during white-light development as a function of development time.

Tables (1)

Tables Icon

Table 1 Fixed Grating Parameters for Different Recording Times

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I S = I S 0 ( 1 η ) + I R 0 η + 2 η ( 1 η ) I S 0 I R 0 × cos ( φ + ψ d sin Ω t ) ,
tan φ sin γ d / 2 sinh Γ d / 2 for β 2 I R 0 / I S 0 1 ,
Γ = { 4 κ } ,   γ = { 4 κ } ,
η = 1 2 cosh Γ d / 2 cos γ d / 2 cosh Γ d / 2
η = I d I d + I t .
I S Ω = 4 J 1 ( ψ d ) η ( 1 η ) I S 0 I R 0 sin φ ,
I S 2 Ω = 4 J 2 ( ψ d ) η ( 1 η ) I S 0 I R 0 cos φ ,
η = sin 2 γ d / 4 = sin 2 κ d ,
N D 1 + ( t ) t + γ e ( 1 + ξ e ) N D 1 + ( t ) + γ e 1 + ( t ) = k m e i K v t ,
1 + ( t ) t + γ H ( 1 + ξ H ) 1 + ( t ) + γ H N D 1 + ( t ) = 0 ,
γ e q μ e n 0 ϵ ε 0 ,
γ H = q μ H 0 ϵ ε 0 ,
ξ e i E ph E q [ Fe 3+ ] [ Fe ] ,
ξ H E D E q ( N D ) eff 0 ,
E q = q ( N D ) eff K ϵ ε 0 , ( N D ) eff = [ Fe 3+ ] [ Fe 2+ ] [ Fe ] ,
N D 1 + = N st e i K v t + transients ,
1 + = st e i K v t + transients .
N st = k m ( γ H ( 1 + ξ H ) i K v ) γ e γ H ( ξ e + ξ H ) K 2 v 2 i K v ( γ e + γ H ) ,
st = k m γ H γ e γ H ( ξ e + ξ H ) K 2 v 2 i K v ( γ e + γ H ) .
st N st = γ H γ H ( 1 + ξ H ) i K v q μ H 0 / ( ϵ ε 0 ) q μ H 0 / ( ϵ ε 0 ) i K v ,
q μ H 0 ϵ ε 0 | K v | ,
st N st 1
[ κ d ] fix = arcsin ( η fix )
[ κ d ] el [ κ d ] fix / 0.1 = 10 .
[ κ d ] max el π n e 3 r 33 E q d 2 λ .
i K ε 0 ϵ E sc = q N D + ,
φ ph = ϕ ph ± π / 2 ,
φ a = ϕ a = ± π / 2

Metrics