Abstract

We demonstrate the use of a switchable circular-to-point converter (SCPC) device based on holographic polymer-dispersed liquid-crystal technology for application in lidar detection and optical telecommunication. A SCPC device converts the Fabry–Perot ring pattern into a single point or an array of points, while an external electrical field on the SCPC deactivates the conversion. Stacking different SCPC elements gives a random optical switch for applications in lidar detection and optical telecommunication. Two types of SCPC designs are analyzed and one is chosen and built for testing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
    [CrossRef]
  2. J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
    [CrossRef]
  3. H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
    [CrossRef]
  4. M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
    [CrossRef]
  5. M. McGill and R. Rallison, "Holographic optics convert rings to points for detection," Laser Focus World 37, 131-136 (2001).
  6. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometry (Taylor and Francis, 1996).
  7. G. P. Crawford and J. W. Doane, "Polymer dispersed liquid crystals," Condens. Matter News 1, 5-11 (1992).
  8. J. W. Doane, Liquid Crystals--Application and Uses (World Scientific, 1990), Vol. 1, Chap. 14.
  9. D. W. Berreman, "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
    [CrossRef]
  10. A. K. Richter and F. P. Carlson, "Holographically generated lens," Appl. Opt. 13, 2924-2930 (1974).
    [CrossRef] [PubMed]
  11. H. Xianyu, J. Qi, R. F. Cohn, and G. P. Crawford, "Total-internal-reflection mode in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 792-794 (2003).
    [CrossRef] [PubMed]
  12. P. Yeh and C. Gu, Optics of Liquid Crystals (Wiley, 1999).
  13. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

2003

2001

M. McGill and R. Rallison, "Holographic optics convert rings to points for detection," Laser Focus World 37, 131-136 (2001).

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

1997

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

1996

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

1992

G. P. Crawford and J. W. Doane, "Polymer dispersed liquid crystals," Condens. Matter News 1, 5-11 (1992).

1974

1972

D. W. Berreman, "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
[CrossRef]

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Berreman, D. W.

D. W. Berreman, "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
[CrossRef]

Betremieux, Y.

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

Carlson, F. P.

Cohn, R. F.

Crawford, G. P.

H. Xianyu, J. Qi, R. F. Cohn, and G. P. Crawford, "Total-internal-reflection mode in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 792-794 (2003).
[CrossRef] [PubMed]

G. P. Crawford and J. W. Doane, "Polymer dispersed liquid crystals," Condens. Matter News 1, 5-11 (1992).

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometry (Taylor and Francis, 1996).

Doane, J. W.

G. P. Crawford and J. W. Doane, "Polymer dispersed liquid crystals," Condens. Matter News 1, 5-11 (1992).

J. W. Doane, Liquid Crystals--Application and Uses (World Scientific, 1990), Vol. 1, Chap. 14.

Doe, R. A.

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

Franco, M.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystals (Wiley, 1999).

Hecht, J. H.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Kerr, R. B.

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Lancaster, R. S.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Marzouk, M.

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

McGill, M.

M. McGill and R. Rallison, "Holographic optics convert rings to points for detection," Laser Focus World 37, 131-136 (2001).

McGill, M. J.

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

Noto, J.

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Qi, J.

Rallison, R.

M. McGill and R. Rallison, "Holographic optics convert rings to points for detection," Laser Focus World 37, 131-136 (2001).

Richter, A. K.

Rudy, R. J.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Schneller, K. E.

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

Schneller, W. J.

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

Scott, V. S.

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

Spinhirne, J. D.

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

Williams, R.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

Xianyu, H.

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystals (Wiley, 1999).

Zhang, H.

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

Zumer, S.

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometry (Taylor and Francis, 1996).

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Condens. Matter News

G. P. Crawford and J. W. Doane, "Polymer dispersed liquid crystals," Condens. Matter News 1, 5-11 (1992).

Geophys. Res. Lett.

R. B. Kerr, J. Noto, R. S. Lancaster, M. Franco, R. J. Rudy, R. Williams, and J. H. Hecht, "First Fabry-Perot observations of He (23P) 10830 Å emission at Millstone," Geophys. Res. Lett. 23, 3239-3242 (1996).
[CrossRef]

J. Opt. Soc. Am.

D. W. Berreman, "Optics in stratified and anisotropic media: 4 × 4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
[CrossRef]

Laser Focus World

M. McGill and R. Rallison, "Holographic optics convert rings to points for detection," Laser Focus World 37, 131-136 (2001).

Opt. Eng.

M. J. McGill, M. Marzouk, V. S. Scott III, and J. D. Spinhirne, "Holographic circle-to-point converter with particular applications for LIDAR work," Opt. Eng. 36, 2171-2175 (1997).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Noto, K. E. Schneller, W. J. Schneller, R. B. Kerr, and R. A. Doe, "Nematic Fabry-Perot etalons for ground and space based atmospheric remote sensing," in Proc. SPIE 3118, 368-377 (1997).
[CrossRef]

H. Zhang, Y. Betremieux, J. Noto, and R. B. Kerr, "Novel tunable liquid crystal Fabry-Perot filters for fiber optical system," in Proc. SPIE 4383, 64-72 (2001).
[CrossRef]

Other

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometry (Taylor and Francis, 1996).

J. W. Doane, Liquid Crystals--Application and Uses (World Scientific, 1990), Vol. 1, Chap. 14.

P. Yeh and C. Gu, Optics of Liquid Crystals (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SCPC converts the collimated circularly distributed signal into a focusing point.

Fig. 2
Fig. 2

LC droplets inside the polymer network of a HPDLC sample.

Fig. 3
Fig. 3

Simulation of the spectral response of normally incident light passing alternating layers of liquid crystal and polymer.

Fig. 4
Fig. 4

Optical setup for fabrication of SCPC.

Fig. 5
Fig. 5

Recording beam configuration near the SCPC sample.

Fig. 6
Fig. 6

Diffracted beam profiles of the 2.54   cm (1 in.) HPDLC. The focal lengths of the cylindrical lens for fabrication are 1000, 2000, and 3000   mm from top to bottom.

Fig. 7
Fig. 7

(a) Reading beam configuration and (b) recording beam configuration of the beam steering HPDLC for SCPC.

Fig. 8
Fig. 8

Electro-optical response curve of a SCPC.

Fig. 9
Fig. 9

(a) Definition of the reading beam incident angle θ in the angular dependence measurement. (b) Transmittance and diffraction efficiency as a function of the incident angle of the SCPC units at a wavelength of 1540   nm .

Fig. 10
Fig. 10

Normalized transmittance is fit to the formula for a transmission grating derived using coupled-wave theory.

Tables (2)

Tables Icon

Table 1 Incident Angles of the Diverging Recording Beam at Different Locations

Tables Icon

Table 2 List of the Switching Voltage, Diffraction Efficiency, and Contrast Ratio of Five SCPC Devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( θ , λ ) = I 0 ( λ ) / [ 1 + ( 2 F / π ) 2 sin 2 ( δ / 2 ) ] ,
η = { k 2 / [ k 2 + ( Δ α / 2 ) 2 ] }   sin { k L [ 1 + ( Δ α / 2 k ) 2 ] 1 / 2 } ,

Metrics