Abstract

Slab waveguides were constructed in K1xLixTa1yNbyO3 crystals by the implantation of C+412 ions at 30 MeV and O+516 ions at 30 and 40 MeV. The waveguides were characterized by a prism coupler setup. A refractive index drop of 10.9% was observed in a layer formed by the implantation of O+516 ions at 30 MeV. The carbon-implanted waveguides were found to be thermally stable after annealing at 450 °C. A semiempirical formula for predicting the change in the refractive index given the parameters of the implantation process was developed. It is argued that the combination of the basic implantation process with the semiempirical formula can be developed to become a generic method for constructing complex electro-optic circuits with a wave-guided architecture.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
    [CrossRef]
  2. A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
    [CrossRef]
  3. H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
    [CrossRef]
  4. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  5. E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, 1995).
  6. T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
    [CrossRef]
  7. J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
    [CrossRef]
  8. G. H. Kinchin and R. S. Pease, "The displacement of atoms in solids by radiation," Rep. Prog. Phys. 18, 1-51 (1955).
    [CrossRef]
  9. A. Agranat, R. Hofmeister, and A. Yariv, "Characterization of a new photorefractive material--K1−yLiyTa1−xNbxO3," Opt. Lett. 17, 713-715 (1992).
    [CrossRef] [PubMed]
  10. E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
    [CrossRef]
  11. R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
    [CrossRef]
  12. J. Seligson, "Prism couplers in guided-wave optics--design considerations," Appl. Opt. 26, 2609-2611 (1987).
    [CrossRef] [PubMed]
  13. R. Ulrich and R. Torge, "Measurement of thin-film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973).
    [CrossRef] [PubMed]
  14. P. J. Chandler and F. L. Lama, "A new approach to the determination of planar wave-guide profiles by means of a nonstationary mode index calculation," Opt. Acta 33, 127-143 (1986).
    [CrossRef]
  15. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
    [CrossRef]
  16. G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
    [CrossRef]
  17. M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
    [CrossRef]
  18. H. Donnerberg, Atomic Simulation of Electrooptic and Magnetooptic Oxide Materials (Springer-Verlag, 1999).

2006 (1)

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

2005 (1)

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

2003 (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

1998 (1)

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

1995 (2)

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

1993 (1)

R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
[CrossRef]

1992 (2)

A. Agranat, R. Hofmeister, and A. Yariv, "Characterization of a new photorefractive material--K1−yLiyTa1−xNbxO3," Opt. Lett. 17, 713-715 (1992).
[CrossRef] [PubMed]

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

1988 (1)

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

1987 (1)

1986 (1)

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar wave-guide profiles by means of a nonstationary mode index calculation," Opt. Acta 33, 127-143 (1986).
[CrossRef]

1979 (1)

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

1973 (1)

1955 (1)

G. H. Kinchin and R. S. Pease, "The displacement of atoms in solids by radiation," Rep. Prog. Phys. 18, 1-51 (1955).
[CrossRef]

Agranat, A.

R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
[CrossRef]

A. Agranat, R. Hofmeister, and A. Yariv, "Characterization of a new photorefractive material--K1−yLiyTa1−xNbxO3," Opt. Lett. 17, 713-715 (1992).
[CrossRef] [PubMed]

Agranat, A. J.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Boatner, L. A.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

Buchal, C.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Catlow, C. R. A.

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

Chandler, P. J.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar wave-guide profiles by means of a nonstationary mode index calculation," Opt. Acta 33, 127-143 (1986).
[CrossRef]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Destefanis, G. L.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Donnerberg, H.

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

H. Donnerberg, Atomic Simulation of Electrooptic and Magnetooptic Oxide Materials (Springer-Verlag, 1999).

Exner, M.

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

Farmery, B. W.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Fathei, R.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Fleuster, M.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Fluck, D.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Gailliard, J. P.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Glavas, E.

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

Gumennik, A.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

Gunter, P.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Hass, M.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

Hofmeister, R.

R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
[CrossRef]

A. Agranat, R. Hofmeister, and A. Yariv, "Characterization of a new photorefractive material--K1−yLiyTa1−xNbxO3," Opt. Lett. 17, 713-715 (1992).
[CrossRef] [PubMed]

Ilan, H.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

Jundt, D. H.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Kakarantzas, G.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Kinchin, G. H.

G. H. Kinchin and R. S. Pease, "The displacement of atoms in solids by radiation," Rep. Prog. Phys. 18, 1-51 (1955).
[CrossRef]

Kip, D.

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar wave-guide profiles by means of a nonstationary mode index calculation," Opt. Acta 33, 127-143 (1986).
[CrossRef]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Ligeon, E. L.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Pease, R. S.

G. H. Kinchin and R. S. Pease, "The displacement of atoms in solids by radiation," Rep. Prog. Phys. 18, 1-51 (1955).
[CrossRef]

Perez, A.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Pliska, T.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Rimini, E.

E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, 1995).

Rytz, D.

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

Schirmer, O. F.

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

Seligson, J.

Shachar, I.

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Torge, R.

Townsend, P. D.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Ulrich, R.

Valette, S.

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

Wong, J. Y. C.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

Yariv, A.

R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
[CrossRef]

A. Agranat, R. Hofmeister, and A. Yariv, "Characterization of a new photorefractive material--K1−yLiyTa1−xNbxO3," Opt. Lett. 17, 713-715 (1992).
[CrossRef] [PubMed]

Zhang, L.

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Appl. Opt. (2)

Appl. Phys. B (1)

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by alpha particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 (2005).
[CrossRef]

H. Ilan, A. Gumennik, R. Fathei, A. J. Agranat, I. Shachar, and M. Hass, "Submerged waveguide constructed by the implantation of 12C ions in electrooptic crystals," Appl. Phys. Lett. 89, 241130 (2006).
[CrossRef]

J. Appl. Phys. (3)

T. Pliska, D. H. Jundt, D. Fluck, P. Gunter, D. Rytz, M. Fleuster, and C. Buchal, "Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,"J. Appl. Phys. 77, 6114-6120 (1995).
[CrossRef]

J. Y. C. Wong, L. Zhang, G. Kakarantzas, P. D. Townsend, P. J. Chandler, and L. A. Boatner, "Ion-implanted optical waveguides in KTaO3," J. Appl. Phys. 71, 49-52 (1992).
[CrossRef]

G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, "Formation of wave-guides and modulators in LiNbO3 by ion-implantation," J. Appl. Phys. 50, 7898-7905 (1979).
[CrossRef]

J. Cryst. Growth (1)

R. Hofmeister, A. Yariv, and A. Agranat, "Growth and characterization of the Perovskite K1−yLiyTa1−xNbxO3:Cu," J. Cryst. Growth 131, 486-494 (1993).
[CrossRef]

Nat. Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Near-field optics: from subwavelength illumination to nanometric shadowing," Nat. Biotechnol. 21, 1377-1386 (2003).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion-implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, "A new approach to the determination of planar wave-guide profiles by means of a nonstationary mode index calculation," Opt. Acta 33, 127-143 (1986).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Exner, H. Donnerberg, C. R. A. Catlow, and O. F. Schirmer, "Computer-simulation of defects in KTaO3," Phys. Rev. B 52, 3930-3940 (1995).
[CrossRef]

Rep. Prog. Phys. (1)

G. H. Kinchin and R. S. Pease, "The displacement of atoms in solids by radiation," Rep. Prog. Phys. 18, 1-51 (1955).
[CrossRef]

Other (3)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, 1995).

H. Donnerberg, Atomic Simulation of Electrooptic and Magnetooptic Oxide Materials (Springer-Verlag, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) TE dark-mode spectrum of sample O2 as measured by the prism coupler; (b) refractive index profile of sample O2 (solid curve) reconstructed by mode fitting (dashed curve) from the measured TE dark-mode spectrum (circles), and the 30   MeV 16 O +5 nuclear stopping curve calculated by TRIM (dotted curve).

Fig. 2
Fig. 2

(Color online) NSOM butt-end reflection map of sample C2. The NSOM tip aperture size is 250   nm .

Fig. 3
Fig. 3

Best fit to the experimental data of the semiempirical formula describing the relative change in the refractive index ( Δ n / n 0 ) versus the unified implantation parameter P and the nuclear stopping deposition energy E D . The squares are the experimental points used to derive the curve.

Tables (1)

Tables Icon

Table 1 Implantation Conditions and Resulting Waveguide Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

δ n 0 = A ( Δ V 0 / Δ V ) ,
δ C 0 = ρ ( Δ V 0 / Δ V ) ,
Δ N = δ C 0 Δ V = ρ Δ V 0 .
δ n m = A ( Δ V m / Δ V ) ,
δ C m = ρ ( Δ V m / Δ V ) ,
δ n m δ C m = A ρ .
Δ n m = k = 1 m δ n k = k = 1 m δ n k δ C k δ C k = A ρ k = 1 m δ C k = A ρ C m ,
δ C m = δ C 0 ρ C m 1 ρ = ρ Δ V 0 Δ V ( 1 C m 1 ρ ) ,
k = 1 m δ C k 1 C k 1 / ρ = k = 1 m ρ Δ V 0 Δ V .
0 C m d C 1 1 C / ρ = ρ   ln ( 1 C m / ρ ) = m ρ Δ V 0 Δ V .
C m = ρ [ 1 exp ( m Δ V 0 Δ V ) ] ,
Δ n m = A [ 1 exp ( m Δ V 0 Δ V ) ] .
Δ n = Δ n max [ 1 exp ( D S Δ V 0 Δ V ) ] .
Δ N = ( 0.4 Δ E n E D ) ,
Δ n = Δ n max [ 1 exp ( 0.4 D ρ Δ E n Δ x 1 E D ) ] .
Δ n = Δ n max [ 1 exp ( P E D ) ] .
V 0 = 0.4 E D ρ 0 ( d E n d x ) d x ,

Metrics