Abstract

A new method for measuring the birefringence dispersion in polarization-maintaining fibers (PMFs) with high sensitivity and accuracy is presented. The method employs white-light interferences between two orthogonally polarized modes of PMFs. The group birefringence of the fiber is calibrated first. Then the birefringence dispersion and its variation along different fiber sections are acquired by analyzing the broadening of interferograms at different fiber lengths. The main sources of error are investigated. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011  ps/(km   nm) and 0.018  ps/(km   nm). A measurement repeatability of 0.001  ps/(km   nm) is achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their application," J. Lightwave Technol. LT-4, 1071-1089 (1986).
    [CrossRef]
  2. W. J. Bock and W. Urbanczyk, "Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry," Appl. Opt. 32, 5841-5848 (1993).
    [CrossRef] [PubMed]
  3. D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
    [CrossRef]
  4. K. Okamoto, T. Edahiro, and N. Shibata, "Polarization properties of single-polarization fibers," Opt. Lett. 7, 569-571 (1982).
    [CrossRef] [PubMed]
  5. W. Urbanczyk, T. Martynkien, and W. J. Bock, "Dispersion effects in elliptical-core highly birefringent fibers," Appl. Opt. 40, 1911-1920 (2001).
    [CrossRef]
  6. N. Shibata, A. Nakazono, and Y. Inoue, "Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber," J. Lightwave Technol. 23, 1244-1252 (2005).
    [CrossRef]
  7. K. Okamoto and T Hosaka, "Polarization-dependent chromatic dispersion in birefringent optical fibers," Opt. Lett. 12, 290-292 (1987).
    [CrossRef] [PubMed]
  8. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, "Birefringence dispersion measurement in optical fibers by wavelength scanning," Opt. Lett. 20, 869-871 (1995).
  9. M. Tsubokawa, N. Shibata, T. Higashi, and S. Seikai, "Loss of longitudinal coherence as a result of the birefringence effect," J. Opt. Soc. Am. A 4, 1895-1901 (1987).
    [CrossRef]
  10. P. Hlubina, T. Martynkien, and W. Urbanczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003).
    [PubMed]
  11. P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
    [CrossRef]
  12. P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
    [CrossRef]
  13. D. A. Flavin, R. McBride, and J. D. C. Jones, "Dispersion of birefringence and differential group delay in polarization-maintaining fiber," Opt. Lett. 27, 1010-1012 (2002).
    [CrossRef]
  14. L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
    [CrossRef]
  15. F. Tang, X. Wang, Y. Zhang, and W. Jing, "Distributed measurement of birefringence dispersion in polarization-maintaining fibers," Opt. Lett. 31, 3411-3413 (2006).
    [CrossRef] [PubMed]
  16. P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
    [CrossRef]
  17. M. Tsubokawa, T. Higashi, and Y. Negishi, "Mode couplings due to external forces distributed along a polarization-maintaining fiber:an evaluation," Appl. Opt. 27, 166-173 (1988).
    [CrossRef] [PubMed]
  18. T. H. Chua and C.-L. Chen, "Fiber polarimetric stress sensors," Appl. Opt. 28, 3158-3165 (1989).
    [PubMed]
  19. W. Jing, Y. Zhang, G. Zhou, H. Zhang, Z. Li, and X. Man, "Rotation angle optimization of the polarization eigenmodes for detection of weak mode coupling in birefringent waveguides," Opt. Express 10, 972-977 (2002).
    [PubMed]

2006 (2)

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

F. Tang, X. Wang, Y. Zhang, and W. Jing, "Distributed measurement of birefringence dispersion in polarization-maintaining fibers," Opt. Lett. 31, 3411-3413 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (2)

2001 (1)

2000 (1)

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
[CrossRef]

1993 (1)

1991 (1)

P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
[CrossRef]

1989 (2)

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

T. H. Chua and C.-L. Chen, "Fiber polarimetric stress sensors," Appl. Opt. 28, 3158-3165 (1989).
[PubMed]

1988 (2)

L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
[CrossRef]

M. Tsubokawa, T. Higashi, and Y. Negishi, "Mode couplings due to external forces distributed along a polarization-maintaining fiber:an evaluation," Appl. Opt. 27, 166-173 (1988).
[CrossRef] [PubMed]

1987 (2)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their application," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

1982 (1)

Alard, F. R.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

Bock, W. J.

Ciprian, D.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

Durteste, Y.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

Edahiro, T.

Flavin, D. A.

Francois, P.-L.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

Higashi, T.

Hlubina, P.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

P. Hlubina, T. Martynkien, and W. Urbanczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003).
[PubMed]

Hosaka, T

Inoue, Y.

Irvine-Halliday, D.

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
[CrossRef]

Jing, W.

Jones, J. D. C.

Khan, M. R.

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
[CrossRef]

Khomenko, A. V.

M. G. Shlyagin, A. V. Khomenko, and D. Tentori, "Birefringence dispersion measurement in optical fibers by wavelength scanning," Opt. Lett. 20, 869-871 (1995).

Knyblova, L.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

Le Boudec, G.

P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
[CrossRef]

Lefevre, H. C.

P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
[CrossRef]

Li, Z.

Man, X.

Martin, P.

P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
[CrossRef]

Martynkien, T.

McBride, R.

Monerie, M.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

Nakazono, A.

Negishi, Y.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their application," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

Okamoto, K.

Pellaux, J.-P.

L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their application," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

Seikai, S.

Shibata, N.

Shlyagin, M. G.

M. G. Shlyagin, A. V. Khomenko, and D. Tentori, "Birefringence dispersion measurement in optical fibers by wavelength scanning," Opt. Lett. 20, 869-871 (1995).

Statkiewicz, G.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

Szpulak, M.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

Tang, F.

Tentori, D.

M. G. Shlyagin, A. V. Khomenko, and D. Tentori, "Birefringence dispersion measurement in optical fibers by wavelength scanning," Opt. Lett. 20, 869-871 (1995).

Thevenaz, L.

L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
[CrossRef]

Tsubokawa, M.

Urbanczyk, W.

Vassallo, C.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

von Der Weid, J.-P.

L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
[CrossRef]

Wang, X.

Zhang, H.

Zhang, P.-G.

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
[CrossRef]

Zhang, Y.

Zhou, G.

Appl. Opt. (4)

J. Lightwave Technol. (4)

N. Shibata, A. Nakazono, and Y. Inoue, "Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber," J. Lightwave Technol. 23, 1244-1252 (2005).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their application," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, "Three ways to implement interfacial techniques: application to measurements of chromatic dispersion, birefringence, and nonlinear susceptibilities," J. Lightwave Technol. 7, 500-513 (1989).
[CrossRef]

L. Thevenaz, J.-P. Pellaux, and J.-P. von Der Weid, "All-fiber interferometer for chromatic dispersion measurements," J. Lightwave Technol. 6, 1-7 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, "Measurement and modelling of dispersion characteristics of a two-mode birefringent holey fibre," Meas. Sci. Technol. 17, 626-630 (2006).
[CrossRef]

Opt. Eng. (1)

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, "Beat-length measurement of high-birefringence polarization maintaining optical fiber using the dc Faraday magneto-optic effect," Opt. Eng. 39, 1310-1315 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

P. Martin, G. Le Boudec, and H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry," in Fiber Optic Gyros:15th Anniversary Conference, S. Ezekiel and E. Udd, eds., Proc. SPIE 1585, 173-179 (1991).
[CrossRef]

Other (1)

M. G. Shlyagin, A. V. Khomenko, and D. Tentori, "Birefringence dispersion measurement in optical fibers by wavelength scanning," Opt. Lett. 20, 869-871 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the white-light interferometer for birefringence dispersion measurement.

Fig. 2
Fig. 2

Birefringence dispersion measurement system.

Fig. 3
Fig. 3

Interference results detected during scanning of the Michelson interferometer.

Fig. 4
Fig. 4

Change of interferograms for coupling points at different fiber positions.

Fig. 5
Fig. 5

Spectral analysis of the sampled white-light interference signal.

Fig. 6
Fig. 6

Acquisition of the white-light interference envelope.

Fig. 7
Fig. 7

Measurement repeatability of the group birefringence.

Fig. 8
Fig. 8

Broadening the interferogram due to birefringence dispersion.

Fig. 9
Fig. 9

Broadening of interferogram for different lengths of two PANDA fibers spliced together.

Fig. 10
Fig. 10

Cumulative probability distribution of the acquired 30 envelope width values.

Fig. 11
Fig. 11

Influence of the rotation angle of the analyzer on interference contrast.

Tables (1)

Tables Icon

Table 1 Birefringence Dispersions of Different Fiber Sections

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = 1 2 π Δ ω exp [ ( ω ω 0 ) 2 2 Δ ω 2 ] ,
I ( d ) = 0 S ( ω ) [ 1 + Re ( exp { i [ Δ β ( ω ) l d ω / c ] } ) ] d ω ,
Δ β ( ω ) ω 0 c Δ n b + ω ω 0 c Δ N b 1 2 ( ω ω 0 ) 2 ω 0 2 2 π c Δ D ,
Δ D = d τ p / d λ = [ ω 0 2 / ( 2 π c ) ] ( d 2 Δ β / d ω 2 ) 0 ,
I ( d ) = I 0 ( 1 + ( 1 + η 2 ) 1 / 4 exp { [ 2 ( Δ N b l d ) 1 + η 2 L c 0 ] 2 } × cos { k 0 ( Δ n b l d ) η 1 + η 2 [ 2 ( Δ N b l d ) L c 0 ] 2 } ) ,
η = ( Δ λ / λ 0 ) 2 2 π c ( Δ D ) l .
W = 1 + η 2 L c 0 η L c 0 .
Δ D 1 2 π c l ( λ 0 Δ λ ) 2 ( W W 0 ) ,
l = d / Δ N b .
Δ N b = d / l .
Δ D 1 2 π c ( l 2 l 1 ) ( λ 0 Δ λ ) 2 ( W 2 W 1 W 0 ) .
Δ N b = ( d 1 d 2 ) / ( l 1 l 2 ) .
δ ( Δ D ) = ( Δ D ) e r r / Δ D = ( Δ N b ) e r r / Δ N b .
δ ( Δ D ) = d e r r / d .
( Δ D ) e r r 1 2 π c l ( λ 0 Δ λ ) 2 W e r r W 0 .

Metrics