Abstract

The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity (200  GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2  m long coated hollow fibers and find an optimum launch f# of 55 allowing spark formation with 98% reliability for bends up to a radius of curvature of 1.5  m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55  mJ pulses through PCFs is shown.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee and R. Knystautas, "Laser spark ignition of chemically reactive gases," AIAA J. 7, 312-317 (1969).
    [CrossRef]
  2. P. D. Ronney, "Laser versus conventional ignition of flames," Opt. Eng. 33, 510-521 (1994).
    [CrossRef]
  3. T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
    [CrossRef]
  4. J. X. Ma, T. W. Ryan III, and J. P. Buckingham, "Nd:YAG Laser Ignition of Natural Gas," in ASME 1998 Spring Technical Conference, ICE, 30, pp. 117-125.
  5. T. X. Phuoc and F. P. White, "Laser-induced spark ignition of CH4/Air mixtures," Combust. Flame 119, 203-216 (1999).
    [CrossRef]
  6. T. X. Phuoc, "Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures," Combust. Flame 122, 508-510 (2000).
    [CrossRef]
  7. Y. L. Chen and J. W. L. Lewis, "Visualization of laser-induced breakdown and ignition," Opt. Express 9, 360-372 (2001).
    [CrossRef] [PubMed]
  8. H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
    [CrossRef]
  9. J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
    [CrossRef]
  10. M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
    [CrossRef] [PubMed]
  11. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
    [CrossRef]
  12. H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
    [CrossRef]
  13. M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
    [CrossRef]
  14. J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
    [CrossRef]
  15. J. D. Dale, P. R. Smy, and R. M. Clements, "Laser ignited internal combustion engine-an experimental study," SAE Paper 780329 (Society of Automotive Engineers, 1979), pp. 1539-1548.
  16. A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).
  17. G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.
  18. G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.
  19. T. X. Phuoc, "Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases," Opt. Commun. 175, 419-423 (2000).
    [CrossRef]
  20. M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.
  21. A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
    [PubMed]
  22. M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).
  23. T. X. Phuoc, "A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Wals force," Opt. Commun. 245, 27-35 (2005).
    [CrossRef]
  24. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, "Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements," Appl. Spectrosc. 57, 1183-1189 (2003).
    [CrossRef] [PubMed]
  25. Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
    [CrossRef]
  26. T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
    [CrossRef]
  27. I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
    [CrossRef]
  28. J. P. Davis, A. L. Smith, C. Giranda, and M. Squicciarini, "Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd:YAG harmonics," Appl. Opt. 30, 4358-4364 (1991).
    [CrossRef] [PubMed]
  29. A. P. Yalin, M. Defoort, B. Willson, Y. Matsura, and M. Miyagi, "Use of hollow core fibers to deliver nanosecond Nd:YAG laser pulses for spark formation," Opt. Lett. 30, 2083-2085 (2005).
    [CrossRef] [PubMed]
  30. R. Tambay and R. K. Thareja, "Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm," J. Appl. Phys. 70, 2890-2892 (1991).
    [CrossRef]
  31. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, "Pulsed laser damage to optical fibers," Appl. Opt. 24, 3140-3145 (1985).
    [CrossRef] [PubMed]
  32. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
    [CrossRef]
  33. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005).
    [CrossRef] [PubMed]
  34. A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum. Electron 29, 1212-1217 (1993).
    [CrossRef]
  35. V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).
  36. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, "Analysis of optical damage mechanisms in hollow-core waveguides delivery nanosecond pulses from a Q-switched Nd:YAG laser," Appl. Opt. 45, 9160-9167 (2006).
    [CrossRef] [PubMed]
  37. A. H. Al-Janabi, "Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition," Laser Phys. Lett. 2, 529-531 (2005).
    [CrossRef]
  38. A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
    [PubMed]
  39. R. K. Nubling and J. A. Harrington, "Launch conditions and mode coupling in hollow-glass waveguides," Opt. Eng. 37, 2454-2458 (1998).
    [CrossRef]
  40. A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
    [CrossRef]
  41. Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, "Hollow-fiber delivery of high-power pulsed Nd:YAG laser light," Opt. Lett. 23, 1858-1860 (1998).
    [CrossRef]
  42. J. D. Shephard, J. D. C Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St. J. Russell, and B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004).
    [CrossRef] [PubMed]
  43. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
    [CrossRef]

2006

2005

M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005).
[CrossRef] [PubMed]

A. P. Yalin, M. Defoort, B. Willson, Y. Matsura, and M. Miyagi, "Use of hollow core fibers to deliver nanosecond Nd:YAG laser pulses for spark formation," Opt. Lett. 30, 2083-2085 (2005).
[CrossRef] [PubMed]

A. H. Al-Janabi, "Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition," Laser Phys. Lett. 2, 529-531 (2005).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).

T. X. Phuoc, "A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Wals force," Opt. Commun. 245, 27-35 (2005).
[CrossRef]

2004

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

J. D. Shephard, J. D. C Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St. J. Russell, and B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004).
[CrossRef] [PubMed]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

2003

F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, "Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements," Appl. Spectrosc. 57, 1183-1189 (2003).
[CrossRef] [PubMed]

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

2002

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

2001

2000

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

T. X. Phuoc, "Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures," Combust. Flame 122, 508-510 (2000).
[CrossRef]

T. X. Phuoc, "Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases," Opt. Commun. 175, 419-423 (2000).
[CrossRef]

1999

T. X. Phuoc and F. P. White, "Laser-induced spark ignition of CH4/Air mixtures," Combust. Flame 119, 203-216 (1999).
[CrossRef]

1998

J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
[CrossRef]

R. K. Nubling and J. A. Harrington, "Launch conditions and mode coupling in hollow-glass waveguides," Opt. Eng. 37, 2454-2458 (1998).
[CrossRef]

Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, "Hollow-fiber delivery of high-power pulsed Nd:YAG laser light," Opt. Lett. 23, 1858-1860 (1998).
[CrossRef]

1997

I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
[CrossRef]

1996

V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).

1995

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

1994

P. D. Ronney, "Laser versus conventional ignition of flames," Opt. Eng. 33, 510-521 (1994).
[CrossRef]

1993

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum. Electron 29, 1212-1217 (1993).
[CrossRef]

1991

R. Tambay and R. K. Thareja, "Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm," J. Appl. Phys. 70, 2890-2892 (1991).
[CrossRef]

J. P. Davis, A. L. Smith, C. Giranda, and M. Squicciarini, "Laser-induced plasma formation in Xe, Ar, N2, and O2 at the first four Nd:YAG harmonics," Appl. Opt. 30, 4358-4364 (1991).
[CrossRef] [PubMed]

1985

1969

J. H. Lee and R. Knystautas, "Laser spark ignition of chemically reactive gases," AIAA J. 7, 312-317 (1969).
[CrossRef]

Alden, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Alexander, D. R.

J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
[CrossRef]

Al-Janabi, A. H.

A. H. Al-Janabi, "Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition," Laser Phys. Lett. 2, 529-531 (2005).
[CrossRef]

Allison, S. W.

Beduneau, J. L.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

Beloglazov, V. I.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Bennett, C. R.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

Buckingham, J. P.

J. X. Ma, T. W. Ryan III, and J. P. Buckingham, "Nd:YAG Laser Ignition of Natural Gas," in ASME 1998 Spring Technical Conference, ICE, 30, pp. 117-125.

Buckley, S. G.

Chang, Y. C.

Changkakoti, R.

Charareh, S.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

Chen, Y. L.

Cheng, M. Y.

Clements, R. M.

J. D. Dale, P. R. Smy, and R. M. Clements, "Laser ignited internal combustion engine-an experimental study," SAE Paper 780329 (Society of Automotive Engineers, 1979), pp. 1539-1548.

Cohen, R. B.

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

Croitoru, N.

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Dale, J. D.

J. D. Dale, P. R. Smy, and R. M. Clements, "Laser ignited internal combustion engine-an experimental study," SAE Paper 780329 (Society of Automotive Engineers, 1979), pp. 1539-1548.

David, M. B.

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Davis, J. P.

Defoort, M.

Defoort, M. W.

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

Drake, M. C.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

El-Rabii, H.

G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.

Fansler, T. D.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

Fedotov, A. B.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Ferioli, F.

Forsich, C.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

Fournier, E. W.

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

Gaborel, G.

G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.

Galvanauskas, A.

Gatchell, P.

Gilber, R.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

Gillies, G. T.

Giranda, C.

Gower, M. C.

I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
[CrossRef]

Graf, J.

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

Hanamoto, K.

Hand, D. P.

Hansen, T. P.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Hardalupas, Y.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Harrington, J. A.

R. K. Nubling and J. A. Harrington, "Launch conditions and mode coupling in hollow-glass waveguides," Opt. Eng. 37, 2454-2458 (1998).
[CrossRef]

Herdin, G.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

Hermann, F.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Hult, H.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Huntington, P.

I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
[CrossRef]

Ikeda, Y.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

Inberg, A.

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Iskra, K.

Jacobsen, C.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Jones, J. D. C.

Joshi, S.

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

Katzir, A.

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Kausner, J.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

Kim, B.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

Klausner, J.

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

Klingman, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Knystautas, R.

J. H. Lee and R. Knystautas, "Laser spark ignition of chemically reactive gases," AIAA J. 7, 312-317 (1969).
[CrossRef]

Kolevatova, O. A.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Konorov, S. O.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Kopecek, H.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

Lackner, M.

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

Lee, J. H.

J. H. Lee and R. Knystautas, "Laser spark ignition of chemically reactive gases," AIAA J. 7, 312-317 (1969).
[CrossRef]

Lewis, J. W. L.

Ma, J. X.

J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
[CrossRef]

J. X. Ma, T. W. Ryan III, and J. P. Buckingham, "Nd:YAG Laser Ignition of Natural Gas," in ASME 1998 Spring Technical Conference, ICE, 30, pp. 117-125.

Magnuson, D. W.

Maher, H.

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

Mamidipudi, P.

Matsura, Y.

Matsuura, Y.

Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, "Hollow-fiber delivery of high-power pulsed Nd:YAG laser light," Opt. Lett. 23, 1858-1860 (1998).
[CrossRef]

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

Mcilroy, A.

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

McIntyre, D.

M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.

McMillian, M.

M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.

Michaille, L.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Miyagi, M.

A. P. Yalin, M. Defoort, B. Willson, Y. Matsura, and M. Miyagi, "Use of hollow core fibers to deliver nanosecond Nd:YAG laser pulses for spark formation," Opt. Lett. 30, 2083-2085 (2005).
[CrossRef] [PubMed]

Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, "Hollow-fiber delivery of high-power pulsed Nd:YAG laser light," Opt. Lett. 23, 1858-1860 (1998).
[CrossRef]

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

Neger, T.

Noll, R.

V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).

Nubling, R. K.

R. K. Nubling and J. A. Harrington, "Launch conditions and mode coupling in hollow-glass waveguides," Opt. Eng. 37, 2454-2458 (1998).
[CrossRef]

Oksman, M.

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Olofsson, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Olsen, D.

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

Orain, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Pagano, T. S.

Panoutsos, C. S.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Parry, J. P.

Phuoc, T. X.

T. X. Phuoc, "A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Wals force," Opt. Commun. 245, 27-35 (2005).
[CrossRef]

T. X. Phuoc, "Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases," Opt. Commun. 175, 419-423 (2000).
[CrossRef]

T. X. Phuoc, "Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures," Combust. Flame 122, 508-510 (2000).
[CrossRef]

T. X. Phuoc and F. P. White, "Laser-induced spark ignition of CH4/Air mixtures," Combust. Flame 119, 203-216 (1999).
[CrossRef]

Poulain, D. E.

J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
[CrossRef]

Puzinauskas, P. V.

Reider, G.

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

Reynolds, A. R.

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

Richardson, S.

M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.

Richter, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Rolon, J. C.

G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.

Ronney, P. D.

P. D. Ronney, "Laser versus conventional ignition of flames," Opt. Eng. 33, 510-521 (1994).
[CrossRef]

Rosalik, M. E.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

Rüdisser, D.

Ryan, T. W.

J. X. Ma, T. W. Ryan III, and J. P. Buckingham, "Nd:YAG Laser Ignition of Natural Gas," in ASME 1998 Spring Technical Conference, ICE, 30, pp. 117-125.

Sato, S.

Sattmann, R.

V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).

Scouflaire, Ph.

G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.

Seyfried, H.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Shcherbakov, A. V.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Shephard, J. D.

Shephard, T. J.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum. Electron 29, 1212-1217 (1993).
[CrossRef]

Skibina, N. B.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Smith, A. L.

Smy, P. R.

J. D. Dale, P. R. Smy, and R. M. Clements, "Laser ignited internal combustion engine-an experimental study," SAE Paper 780329 (Society of Automotive Engineers, 1979), pp. 1539-1548.

Spiglanin, T. A.

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

Squicciarini, M.

Stakhiv, A.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

Stephens, T. J.

Stojkovic, B.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

Sturm, V.

V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

Syage, J. A.

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

Tambay, R.

R. Tambay and R. K. Thareja, "Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm," J. Appl. Phys. 70, 2890-2892 (1991).
[CrossRef]

Taylor, A. M. K. P.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Taylor, D. M.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Tesch, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

Thareja, R. K.

R. Tambay and R. K. Thareja, "Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm," J. Appl. Phys. 70, 2890-2892 (1991).
[CrossRef]

Turcu, I. C. E.

I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
[CrossRef]

Weinrotter, M.

M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

White, F. P.

T. X. Phuoc and F. P. White, "Laser-induced spark ignition of CH4/Air mixtures," Combust. Flame 119, 203-216 (1999).
[CrossRef]

Willson, B.

A. P. Yalin, M. Defoort, B. Willson, Y. Matsura, and M. Miyagi, "Use of hollow core fibers to deliver nanosecond Nd:YAG laser pulses for spark formation," Opt. Lett. 30, 2083-2085 (2005).
[CrossRef] [PubMed]

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

Winter, F.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

Wintner, E.

M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, "Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy," Opt. Express 12, 4546-4557 (2004).
[CrossRef] [PubMed]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

Woodruff, S.

M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

Yalin, A. P.

A. P. Yalin, M. Defoort, B. Willson, Y. Matsura, and M. Miyagi, "Use of hollow core fibers to deliver nanosecond Nd:YAG laser pulses for spark formation," Opt. Lett. 30, 2083-2085 (2005).
[CrossRef] [PubMed]

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

Zheltikov, A. M.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Zimmer, L.

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

AIAA J.

J. H. Lee and R. Knystautas, "Laser spark ignition of chemically reactive gases," AIAA J. 7, 312-317 (1969).
[CrossRef]

Appl. Opt.

Appl. Phys. B

V. Sturm, R. Sattmann, and R. Noll, "Optical fiber transmission of multiple-switch Nd:YAG laser pulses with microsecond interpulse serparations," Appl. Phys. B 63, 363-370 (1996).

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, "Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy," Appl. Phys. B 75, 577-590 (2002).
[CrossRef]

Appl. Spectrosc.

Appl. Therm. Eng.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, H. Hult, M. Alden, F. Hermann, and J. Klingman, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK)," Appl. Therm. Eng. 24, 1619-1632 (2004).
[CrossRef]

Combust. Flame

J. L. Beduneau, B. Kim, L. Zimmer, and Y. Ikeda, "Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark," Combust. Flame 132, 653-665 (2003).
[CrossRef]

T. A. Spiglanin, A. Mcilroy, E. W. Fournier, R. B. Cohen, and J. A. Syage, "Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures," Combust. Flame 102, 310-328 (1995).
[CrossRef]

T. X. Phuoc and F. P. White, "Laser-induced spark ignition of CH4/Air mixtures," Combust. Flame 119, 203-216 (1999).
[CrossRef]

T. X. Phuoc, "Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures," Combust. Flame 122, 508-510 (2000).
[CrossRef]

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, "Fundamentals of high-energy spark ignition with lasers," Combust. Flame 138, 55-77 (2004).
[CrossRef]

J. X. Ma, D. R. Alexander, and D. E. Poulain, "Laser spark ignition and combustion characteristics of methane-air mixtures," Combust. Flame 112, 492-506 (1998).
[CrossRef]

Exp. Therm. Fluid Sci.

H. Kopecek, H. Maher, G. Reider, F. Winter, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure," Exp. Therm. Fluid Sci. 27, 499-503 (2003).
[CrossRef]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, "Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure," Exp. Therm. Fluid Sci. 29, 569-577 (2005).
[CrossRef]

IEEE J. Quantum. Electron

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum. Electron 29, 1212-1217 (1993).
[CrossRef]

J. Appl. Phys.

R. Tambay and R. K. Thareja, "Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm," J. Appl. Phys. 70, 2890-2892 (1991).
[CrossRef]

J. Eng. Gas Turbines Power

H. Kopecek, S. Charareh, M. Lackner, C. Forsich, F. Winter, J. Kausner, G. Herdin, and E. Wintner, "Laser ignition of methane-air mixtures at high pressure and diagnostics," J. Eng. Gas Turbines Power 127, 213-219 (2005).
[CrossRef]

J. Phys. D

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, "Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fiber," J. Phys. D 36, 1375-1381 (2003).
[CrossRef]

Laser Phys.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, "Laser ignition of engines via optical fibers?" Laser Phys. 14, 738-747 (2004).

M. Weinrotter, H. Kopecek, and E. Wintner, "Laser ignition of engines," Laser Phys. 15, 947-953 (2005).

Laser Phys. Lett.

A. H. Al-Janabi, "Transportation of nanosecond laser pulses by hollow core photonic crystal fiber for laser ignition," Laser Phys. Lett. 2, 529-531 (2005).
[CrossRef]

Opt. Commun.

I. C. E. Turcu, M. C. Gower, and P. Huntington, "Measurement of KrF laser breakdown threshold in gases," Opt. Commun. 134, 66-68 (1997).
[CrossRef]

T. X. Phuoc, "A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Wals force," Opt. Commun. 245, 27-35 (2005).
[CrossRef]

T. X. Phuoc, "Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases," Opt. Commun. 175, 419-423 (2000).
[CrossRef]

Opt. Eng.

P. D. Ronney, "Laser versus conventional ignition of flames," Opt. Eng. 33, 510-521 (1994).
[CrossRef]

R. K. Nubling and J. A. Harrington, "Launch conditions and mode coupling in hollow-glass waveguides," Opt. Eng. 37, 2454-2458 (1998).
[CrossRef]

A. Inberg, M. B. David, M. Oksman, A. Katzir, and N. Croitoru, "Theoretical model and experimental studies of infrared radiation propagation in hollow plastic and glass waveguides," Opt. Eng. 39, 1316-1320 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shephard, C. Jacobsen, and T. P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic bandgap optical fibers," in Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Other

A. P. Yalin, M. W. Defoort, S. Joshi, D. Olsen, B. Willson, Y. Matsuura, and M. Miyagi, "Laser ignition of natural gas using fiber delivery," in Proceedings of ICEF 2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1336, 1-9.
[PubMed]

J. X. Ma, T. W. Ryan III, and J. P. Buckingham, "Nd:YAG Laser Ignition of Natural Gas," in ASME 1998 Spring Technical Conference, ICE, 30, pp. 117-125.

M. McMillian, S. Woodruff, D. McIntyre, and S. Richardson, "Laser spark ignition for natural gas fueled reciprocating engines," in Proceedings of Gas Machinery Conference (2003), pp. 1-20.

A. P. Yalin, A. R. Reynolds, S. Joshi, M. W. Defoort, B. Willson, Y. Matsuura, and M. Miyagi, "Development of a fiber delivered laser ignition system for natural gas engines," in Proceedings of ICEF 2006, ASME Internal Combustion Engine Division 2006 Spring Technical Conference, Paper No. ICEF 2006-1370, pp. 1-6.
[PubMed]

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, and J. Graf, "Laser ignition-a new concept to use and increase the potentials of gas engines," in Proceedings of ICEF2005, ASME Internal Combustion Engine Division 2005 Fall Technical Conference, Paper No. ICEF 2005-1352, pp. 1-9.

G. Gaborel, H. El-Rabii, Ph. Scouflaire, and J. C. Rolon, "Toward the development of laser ignition system for aircraft engines," in Proceedings of First INCA, Workshop (Snecma, 2005), pp. 1-8.

J. D. Dale, P. R. Smy, and R. M. Clements, "Laser ignited internal combustion engine-an experimental study," SAE Paper 780329 (Society of Automotive Engineers, 1979), pp. 1539-1548.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Minimum pulse energy required for ignition for methane–air mixtures [8].

Fig. 2
Fig. 2

Schematic of light exiting fiber.

Fig. 3
Fig. 3

Cross-sectional view of the hollow core coated fiber (Ref. 29).

Fig. 4
Fig. 4

Schematic setup for 2   m long hollow core fiber.

Fig. 5
Fig. 5

Large mode area solid core PCF fiber (from Crystal Fiber A∕S).

Fig. 6
Fig. 6

Transmission of 25 μ m core LMA-PCF.

Fig. 7
Fig. 7

Experimental setup of the fiber laser (Ref. 33).

Fig. 8
Fig. 8

Theoretical and experimentally achievable pulse energy as a function of pulsed duration.

Tables (3)

Tables Icon

Table 1 Calculated FOM Values for Different Fibers

Tables Icon

Table 2 Effect of Launch Geometry on 2 m Long Hollow Waveguides

Tables Icon

Table 3 Effect of Bending Configuration for Input f # = 55

Equations (156)

Equations on this page are rendered with MathJax. Learn more.

200   GW / cm 2
2   m
55
98 %
1.5   m
0.55   mJ
5 10   ns
C O 2
( megawatt )
( 100 300 GW / cm 2 )
( < 1   mJ )
2   m
25 μ m
( 3   MPa )
10   mJ
10   mJ
( 1 3 GW / cm 2 )
( 300 μ m )
( 10   mJ )
M 2 100
150 μ m
5 10   ns
d exit
I exit
I spark
d spark
ϴ exit
ϴ spark
ϴ exit / ϴ spark
d spark = θ exit θ spark d exit .
I spark = I exit ( θ spark θ exit ) 2 .
I BD,atm
FOM I spark I BD , atm = I exit I BD , atm ( θ spark θ exit ) 2 .
( I exit )
ϴ exit
M 2
ϴ spark
f #
I BD,atm = 200 GW / cm 2
f # = 2 ( ϴ spark = 0.25 )
ϴ spark
FOM   > 1
M 2
FOM I spark I BD , atm I exit I BD , atm ( π d exit θ spark 2 M 2 exit λ ) 2 .
I BD,atm
ϴ spark
( ± 50 % )
f #
M 2
FOM > 1
FOM > 1
1   mJ
700 μ m
f #
72
( 97 % )
M 2
300 GW / cm 2
2   m
2   m
1   mm
1064   nm
10   Hz
M 2 < 2
f #
f # s : 35
8   mm
300   mm
( I 1 )
20   mm   ( I 2 )
f launch
f #
ϴ exit
w launch
w focus
I exit
I focus
w focus
M 2
( M 2 exit )
98 %
f # 55
( ϴ exit 0.014 )
M 2
15
35   mJ
470   GW / cm 2
f #
( f # 85 )
( f # 35 )
f #
f #
100   cm
100   cm
M 2
( R = 1.5   m )
( 98 % )
R = 1   m
( 0.019 )
M 2
14 μ m
0.37   mJ
1064   nm
65   ns
0.15   mJ
10   mJ
2   m
25 μ m
M 2 1.4
50   mm
97 %
45 %
1.3   mJ
0.55   mJ
( 40 80 μ m )
M 2
2.4   MW
4   ns
80 μ m
M 2 1.5
I damage = Φ damage / τ
Φ damage
1   ns
d spark
d M F D
I spark
I damage
I spark = I damage ( d M F D d spark ) 2 .
Φ damage
100   J / cm 2
80 μ m
60 μ m
20 μ m
M 2
6   ns
300   GW / cm 2
100 J / cm 2
1   ns
0.7   ns
80 μ m
2.4   mJ
3.4   MW
50   Hz
( M 2 )
2   m
( f # 55 )
35   mJ
( P 0.4 )
0.7   ns
2.4   mJ
0.55   mJ
10 ( = 2 2 / 10 0.4 )
M 2 exit
M 2 exit
2   m
25 μ m

Metrics