Abstract

Phase-shaped femtosecond laser pulses and mass spectrometry were implemented as a tool for improving molecular identification. We demonstrate that the specific lines in the mass spectra of several chemical warfare simulants are sensitive to the phase characteristics of the incident laser field. The deviation in the relative yield of fragment ions observed upon pulse shaping (enhancement or suppression) adds a new dimension to mass spectrometry that improves molecular identification and can be used to quantitatively analyze mixtures of isomers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
    [Crossref]
  2. M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
    [Crossref]
  3. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
    [Crossref] [PubMed]
  4. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
    [Crossref] [PubMed]
  5. I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416 (2005).
    [Crossref]
  6. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
    [Crossref]
  7. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061-1066 (2004).
    [Crossref] [PubMed]
  8. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [Crossref] [PubMed]
  9. I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
    [Crossref] [PubMed]
  10. V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).
  11. V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
    [Crossref]
  12. J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
    [Crossref] [PubMed]
  13. J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
    [Crossref]

2006 (4)

I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
[Crossref] [PubMed]

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
[Crossref] [PubMed]

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

2005 (2)

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416 (2005).
[Crossref]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[Crossref]

2004 (2)

2001 (1)

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[Crossref] [PubMed]

2000 (1)

J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
[Crossref]

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

1982 (1)

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Chess, E. K.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Comstock, M.

Crow, F. W.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Dantus, M.

J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
[Crossref] [PubMed]

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
[Crossref] [PubMed]

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416 (2005).
[Crossref]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061-1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Dela Cruz, J. M.

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[Crossref]

Evans, S.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Fry, A.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Gross, M. L.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Gunaratne, T.

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

Gunaratne, T. C.

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Hanning-Lee, M. A.

J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
[Crossref]

Hanold, K. A.

J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
[Crossref]

Harris, D. A.

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Kangas, M.

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416 (2005).
[Crossref]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[Crossref] [PubMed]

Lozovoy, V. V.

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
[Crossref] [PubMed]

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061-1066 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Lyon, P. A.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

MacKay, J.

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[Crossref] [PubMed]

Pastirk, I.

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[Crossref] [PubMed]

Resan, B.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Shane, J. C.

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
[Crossref] [PubMed]

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

Syage, J. A.

J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
[Crossref]

Tudge, S. H.

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

Zhu, X.

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Chem. Phys. Chem. (1)

V. V. Lozovoy, T. Gunaratne, J. C. Shane, and M. Dantus, "Control of chemical reactions using binary phase shaped femtosecond laser pulses," Chem. Phys. Chem. 12, 2471-2473 (2006).
[Crossref]

Field Anal. Chem. Technol. (1)

J. A. Syage, M. A. Hanning-Lee, and K. A. Hanold, "A man-portable, photoionization time-of-flight mass spectrometer," Field Anal. Chem. Technol. 4, 204-215 (2000).
[Crossref]

Int. J. Mass Spectrom. Ion Process. (1)

M. L. Gross, E. K. Chess, P. A. Lyon, F. W. Crow, S. Evans, and S. H. Tudge, "Triple analyzer mass-spectrometry for high-resolution ms/ms studies," Int. J. Mass Spectrom. Ion Process. 42, 243-254 (1982).
[Crossref]

J. Mod. Opt. (1)

J. M. Dela Cruz, M. Kangas, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Systematic chemical recognition using shaped laser pulses," J. Mod. Opt. 53, 2533-2541 (2006).
[Crossref]

J. Phys. Chem. A (3)

J. C. Shane, V. V. Lozovoy, and M. Dantus, "Search space mapping: getting a picture of coherent laser control," J. Phys. Chem. A 110, 11388-11391 (2006).
[Crossref] [PubMed]

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416 (2005).
[Crossref]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Science (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[Crossref] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[Crossref] [PubMed]

Other (1)

V. V. Lozovoy, X. Zhu, T. C. Gunaratne, D. A. Harris, J. C. Shane, and M. Dantus, "Control of molecular fragmentation using shaped femtosecond pulses" (submitted to J. Phys. Chem. A).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic experimental setup used for these experiments. Commercial 15 fs oscillator output is directed through the LC-(Cambridge Research and Instrumentation, Model SLM128 D VN) based pulse shaper in the folded 4f configuration, where f = 150   mm . Dispersion element is a gold diffraction grating with 830   grooves / mm (Edmund Optics). Shaped pulses are directed through the standard commercial chirped-pulse amplifier. A base pressure of 10 7 Torr is maintained in the time-of-flight mass spectrometer by a three-stage differential pumping scheme with a mechanical roughing pump, a diffusion pump, and a turbo pump. The sample is effused to the chamber by an inlet valve up to a pressure of 10 5 Torr for experiments. The spectrum of the laser pulse is shown in (b) together with a typical binary phase. The femtosecond laser pulse is also shown in the time domain when it is transform limited (solid curves) and when it is shaped (dotted curve).

Fig. 2
Fig. 2

Mass spectra of acetophenone, dimethyl phosphite, and phenylethanol obtained using TL 35 fs pulses (curves, Y TL ). The plot includes the average deviation δ of the mass spectra (filled areas, Y Y TL ) observed upon shaping. The sign and magnitude of δ can be used as an additional dimension, together with mz and the intensity ratio for real-time molecular identification.

Fig. 3
Fig. 3

Portion ( m / z > 100 ) of the mass spectra of meta- and para-nitrotoluene obtained using TL 35 fs pulses (curves, Y TL ) with the average deviation δ of the mass spectra (filled areas Y Y TL ) observed upon shaping (top two panels). The magnitude of δ can be used as an additional dimension together with mz for real-time molecular identification. Quantitative analysis of an isomer mixture (bottom panel). I n is the integrated value for δ for mz 107. The three points in the graph represent pure meta-, pure para-nitrotoluene, and a mixture, prepared to be 23.9% by weight of para-nitrotoluene in meta-nitrotoluene.

Metrics