Abstract

A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl2) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl2 (11u11g+) transition at 213  nm generates 253 .7   nm emission from the Hg  (6P31) photoproduct that is proportional to the concentration of HgCl2. A measured quadratic dependence of the HgCl2 photofragment emission (PFE) signal on the laser irradiance indicates that the photodissociation process involves two-photon excitation. Additionally, low concentrations of HgCl2 are detected with the PFE approach in an environment characteristic of coal-fired power-plant flue gas using this compact solid-state laser source. A detection limit of 0.7 ppb is extrapolated from these results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
    [CrossRef]
  2. P. Monkhouse, "On-line diagnostic methods for metal species in industrial process gas," Prog. Energy Combust. Sci. 28, 331-381 (2002).
    [CrossRef]
  3. J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
    [CrossRef]
  4. C. Roxlo and A. Mandl, "Vacuum ultraviolet absorption cross sections for halogen containing molecules," J. Appl. Phys. 51, 2969-2972 (1980).
    [CrossRef]
  5. D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
    [CrossRef]
  6. A. A. Hoops and T. A. Reichardt, "Pulsed laser photofragment emission for detection of mercuric chloride," Appl. Opt. 45, 6180-6186 (2006).
    [PubMed]
  7. A. A. Hoops, Sandia National Laboratories, P.O. Box 969, MS 9056, Livermore, California 94551, and T. A. Reichardt are preparing a manuscript to be called "Time-resolved measurements of HgCl2 photofragment emission in mixtures of N2, O2, and CO2".
  8. R. B. Barat and A. T. Poulos, "Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy," Appl. Spectrosc. 52, 1360-1363 (1998).
  9. T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
    [CrossRef]
  10. C. Whitehurst and T. A. King, "Multiphoton excitation of mercury atoms by photodissociaiton of HgX2 (X = Cl, Br, I)," J. Phys. B 20, 4053-4064 (1987).
    [CrossRef]
  11. U. Gottwald and P. Monkhouse, "Single-port optical access for spectroscopic measurements in industrial flue gas ducts," Appl. Phys. B 69, 151-154 (1999).
    [CrossRef]
  12. D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
    [CrossRef]
  13. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, 1986).
  14. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  15. J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
    [CrossRef]
  16. P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J.-P. Fève, and N. Landru, "High-power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths," Opt. Express 14, 11528-11538 (2006).
    [CrossRef] [PubMed]
  17. G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
    [CrossRef]
  18. J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).
  19. L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
    [CrossRef]

2006

2005

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

2003

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
[CrossRef]

2002

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

P. Monkhouse, "On-line diagnostic methods for metal species in industrial process gas," Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

2001

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

2000

1999

U. Gottwald and P. Monkhouse, "Single-port optical access for spectroscopic measurements in industrial flue gas ducts," Appl. Phys. B 69, 151-154 (1999).
[CrossRef]

1998

R. B. Barat and A. T. Poulos, "Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy," Appl. Spectrosc. 52, 1360-1363 (1998).

1996

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

1987

C. Whitehurst and T. A. King, "Multiphoton excitation of mercury atoms by photodissociaiton of HgX2 (X = Cl, Br, I)," J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

1985

D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

1980

C. Roxlo and A. Mandl, "Vacuum ultraviolet absorption cross sections for halogen containing molecules," J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

1978

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
[CrossRef]

Barat, R. B.

R. B. Barat and A. T. Poulos, "Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy," Appl. Spectrosc. 52, 1360-1363 (1998).

Calvert, J. G.

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Cao, Y.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Carty, R.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Chu, P.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Cool, T. A.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
[CrossRef]

Curtis, L. J.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

DeWall, R. A.

G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
[CrossRef]

Di Teodoro, F.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Dillon, M. A.

D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

Duan, Y.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Dunham, G. E.

G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
[CrossRef]

Erlandson, A. C.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
[CrossRef]

Farrow, R. L.

Fève, J.-P.

Fischer, C. F.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

Goldberg, L.

Gottwald, U.

U. Gottwald and P. Monkhouse, "Single-port optical access for spectroscopic measurements in industrial flue gas ducts," Appl. Phys. B 69, 151-154 (1999).
[CrossRef]

Henderson, M.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

Hoops, A. A.

A. A. Hoops and T. A. Reichardt, "Pulsed laser photofragment emission for detection of mercuric chloride," Appl. Opt. 45, 6180-6186 (2006).
[PubMed]

A. A. Hoops, Sandia National Laboratories, P.O. Box 969, MS 9056, Livermore, California 94551, and T. A. Reichardt are preparing a manuscript to be called "Time-resolved measurements of HgCl2 photofragment emission in mixtures of N2, O2, and CO2".

Irving, R. E.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

Kellie, S.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

King, T. A.

C. Whitehurst and T. A. King, "Multiphoton excitation of mercury atoms by photodissociaiton of HgX2 (X = Cl, Br, I)," J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

Kliner, D. A. V.

P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J.-P. Fève, and N. Landru, "High-power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths," Opt. Express 14, 11528-11538 (2006).
[CrossRef] [PubMed]

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
[CrossRef]

Koplow, J. P.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
[CrossRef]

Landru, N.

Li, L.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Mandl, A.

C. Roxlo and A. Mandl, "Vacuum ultraviolet absorption cross sections for halogen containing molecules," J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

Matulioniene, R.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

McGarvey, J. A.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
[CrossRef]

Mehta, A. K.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Monkhouse, P.

P. Monkhouse, "On-line diagnostic methods for metal species in industrial process gas," Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

U. Gottwald and P. Monkhouse, "Single-port optical access for spectroscopic measurements in industrial flue gas ducts," Appl. Phys. B 69, 151-154 (1999).
[CrossRef]

Moore, S. W.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Pan, W.-P.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Pinnington, E. H.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

Pitts, J. N.

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Poulos, A. T.

R. B. Barat and A. T. Poulos, "Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy," Appl. Spectrosc. 52, 1360-1363 (1998).

Reichardt, T. A.

Riley, J. T.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Roxlo, C.

C. Roxlo and A. Mandl, "Vacuum ultraviolet absorption cross sections for halogen containing molecules," J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Schrader, P. E.

Senior, C. L.

G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Smith, A. V.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Spence, D.

D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

Wang, R.-G.

D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

Weast, R. C.

R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, 1986).

Whitehurst, C.

C. Whitehurst and T. A. King, "Multiphoton excitation of mercury atoms by photodissociaiton of HgX2 (X = Cl, Br, I)," J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

Xu, W.

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

U. Gottwald and P. Monkhouse, "Single-port optical access for spectroscopic measurements in industrial flue gas ducts," Appl. Phys. B 69, 151-154 (1999).
[CrossRef]

Appl. Spectrosc.

R. B. Barat and A. T. Poulos, "Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy," Appl. Spectrosc. 52, 1360-1363 (1998).

Appl. Spectrosc. Rev.

J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996).
[CrossRef]

Chem. Phys. Lett.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, "Two-photon excitation of mercury atoms by photodissociation of mercury halides," Chem. Phys. Lett. 58, 108-113 (1978).
[CrossRef]

Energy Fuels

Y. Cao, Y. Duan, S. Kellie, L. Li, W. Xu, J. T. Riley, W.-P. Pan, P. Chu, A. K. Mehta, and R. Carty, "Impact of coal chlorine on mercury speciation and emission from a 100-MW utility boiler with cold-side electrostatic precipitators and low-NOX burners," Energy Fuels 19, 842-854 (2005).
[CrossRef]

Fuel Process. Technol.

G. E. Dunham, R. A. DeWall, and C. L. Senior, "Fixed-bed studies of the interactions between mercury and coal combustion fly ash," Fuel Process. Technol. 82, 197-213 (2003).
[CrossRef]

IEEE J. Quantum Electron.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "A new method for side pumping of double-clad fiber sources," IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

J. Appl. Phys.

C. Roxlo and A. Mandl, "Vacuum ultraviolet absorption cross sections for halogen containing molecules," J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

J. Chem. Phys.

D. Spence, R.-G. Wang, and M. A. Dillon, "Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact," J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

J. Phys. B

C. Whitehurst and T. A. King, "Multiphoton excitation of mercury atoms by photodissociaiton of HgX2 (X = Cl, Br, I)," J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

Opt. Commun.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. F. Fischer, and E. H. Pinnington, "Measurements and predictions of the 6s6p 1,3P1 lifetimes in the Hg isoelectronic sequence," Phys. Rev. A 63, 042502-1-7 (2001).
[CrossRef]

Prog. Energy Combust. Sci.

P. Monkhouse, "On-line diagnostic methods for metal species in industrial process gas," Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

Other

R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, 1986).

A. A. Hoops, Sandia National Laboratories, P.O. Box 969, MS 9056, Livermore, California 94551, and T. A. Reichardt are preparing a manuscript to be called "Time-resolved measurements of HgCl2 photofragment emission in mixtures of N2, O2, and CO2".

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy level diagram for HgCl 2 and photoproduct states relative to HgCl 2 ( 1 1 g + ) . The peaks of the transitions to excited levels of HgCl 2 are represented by solid lines, and the gray shaded regions indicate the energies spanned by the bands [5].

Fig. 2
Fig. 2

(a) Diagram of the fiber amplifier and frequency conversion apparatus. FI, Faraday isolator; FC, fiber coupler; λ / 2 , half-wave plate (at the designated wavelength in nm). Dashed lines denote free-space beams. (b) Frequency conversion steps occurring in the nonlinear crystals. Arrows signify photon energies with wavelength in nanometers indicated alongside the beams.

Fig. 3
Fig. 3

HgCl 2 PFE signal strength versus laser pulse energy (bottom axis) and laser irradiance (top axis) obtained with 7 × 10 5   Torr of HgCl 2 in 0.4 Torr of N 2 . Each data point (open circle) comprises 10 5 laser shots. The fit of the experimental data to Eq. (1) (solid line) yields a power dependence of 1.96 ± 0.01 .

Equations (223)

Equations on this page are rendered with MathJax. Learn more.

( HgCl 2 )
HgCl 2
( 1 1 u 1 1 g + )
213   nm
253 .7   nm
Hg   ( 6 P 3 1 )
HgCl 2
HgCl 2
HgCl 2
Hg 0
HgCl 2
HgCl 2
HgCl 2
HgCl 2
1 1 g +
1 1 u
1 1 u +
2 1 u +
HgCl 2
209.8   nm
Hg ( 6 P 3 1 6 S 1 0 )
253.7   nm
209 .8  nm
HgCl 2
N 2
O 2
CO 2
HgCl 2
HgCl 2
213   nm
HgCl 2
HgCl 2
213   nm
20%
209 .8   nm
213   nm
HgCl 2
HgCl 2
HgCl 2
HgCl 2
HgCl 2
HgCl 2 ( g )
21.8 ° C 22.4 ° C
HgCl 2
7 × 10 5   Torr
N 2
O 2
CO 2
HgCl 2
N 2
N 2 / O 2 / CO 2
11.3 % CO 2
5.4 % O 2
83.3 % N 2
25   μm
0 .10
1 .67   cm
976   nm
6   kHz
1064   nm
11 .5   cm × 11 .5   cm × 6 .8   cm
30 .5   cm × 25 .4   cm
1064   nm
213   nm
1064   nm
532   nm
θ = 90 °
ϕ = 26 °
355   nm
532   nm
10   mm
θ = 90 °
ϕ = 37 °
355   nm
213   nm
20   mm
355   nm
532   nm
532   nm
355   nm
213   nm
213   nm
> 70 %
50 %
213   nm
0.5   μJ
200   nJ
80   μm
213   nm
213   nm
HgCl 2
253.7   nm
1200 V
> 10 4
HgCl 2
253.7   nm
17   mm
50   Ω
4
40   mV
8   mV
50   Ω
100   μJ
HgCl 2
N 2
HgCl 2
0.5   μJ
0 .1
HgCl 2
3.4
10 5
10 5
HgCl 2
HgCl 2
HgCl 2
253.7   nm
80   μm
7 × 10 5
HgCl 2
N 2
< 0.5
HgCl 2
S = A I b ,
b < n
HgCl 2
b = 1.96 ± 0.01
HgCl 2
213   nm
Hg ( 6 P 3 1 )
HgCl 2 ( 1 1 g + )
Hg   ( 6 P 3 1 )
HgCl 2 ( 1 1 g + )
213   nm
Hg   ( 6 P 3 1 )
HgCl 2
450 MW / cm 2
HgCl 2
1040 MW / cm 2
I 2
4 % O 2
14 % CO 2
6 % H 2 O
N 2
200 ° C
HgCl 2
HgCl 2
11.3 % CO 2
5.4 % O 2
83.3 % N 2
1.54 × 10 3
10 5
0.41   μJ
HgCl 2
10 5
S = C B .
s S
s S = [ ( s C ) 2 + ( s B ) 2 ] 1 / 2 ,
s C
s B
s X = X
s S = ( C + B ) 1 / 2 .
s S
s S = ( S + 2 B ) 1 / 2 .
S / N = S s S = S ( S + 2 B ) 1 / 2 .
1.53 × 10 3
10 5
S D L = 2 = 11
DL = S D L = 2 ( N HgCl 2 / N total ) S ,
( N HgCl 2 / N total ) = 90   ppb
HgCl 2
10 5
17   s
213   nm
HgCl 2
6 % H 2 O
S c
S expt
S c = S expt ( τ r 1 + Q expt τ r 1 + Q c ) .
τ r
Hg ( 6 P 3 1 )
118.9   ns
τ r 1 + Q expt
6.1 × 10 8 s 1
22 ° C
4%   O 2
14 % CO 2
H 2 O
76%   N 2
5.7 × 10 8 s 1
π σ i 2
i , q i
q i = π σ i 2 ( 8 π μ i j k B T ) 1 / 2 ,
μ i j
k B
4.5 × 10 8 s 1
2.0 × 10 3
N total
200 ° C
22   ° C
1040   MW / cm 2
21 MW / cm 2
210   MW / cm 2
> 1   kHz
2 .75 × 10 4
HgCl 2
HgCl 2
HgCl 2
213   nm
HgCl 2 ( 1 1 u 1 1 g + )
Hg   ( 6 P 3 1 )
253.7   nm
HgCl 2
HgCl 2
HgCl 2
HgCl 2 ( 1 1 g + )
HgCl 2
λ / 2
HgCl 2
7 × 10 5   Torr
HgCl 2
N 2
10 5
1.96 ± 0.01

Metrics