Abstract

A mid-infrared spectrometer with a tuning range of >400cm1 in the C–H stretching region of the spectrum has been designed and constructed. The spectrometer is based on the difference-frequency generation of two tunable diode lasers in periodically poled lithium niobate waveguides. Tuning is achieved by varying a single parameter, the wavelength of one of the near-infrared input lasers. The instrument can be tuned over the entire tuning range in less than 1 s. By taking advantage of the wide tuning range, the instrument has been used to analyze a mixture of methane, ethylene, and propylene. Each of these major components was measured with an accuracy of better than 2% (where the error is defined as a percentage of the measured value) in a single 30 s long scan. When optimized, the spectrometer has the potential to meet both the performance requirements and the practical requirements for real-time process control in petrochemical manufacturing. The general principles for the design of mid-infrared spectrometers with wide tuning ranges are explained, including the use of variable waveguide fabrication recipes to create broad phase-matching resonances (which lead to broad tuning) in the desired location.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Töpfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, "Room-temperature mid-infrared laser sensor for trace gas detection," Appl. Opt. 36, 8042-8049 (1997).
    [CrossRef]
  2. D. Richter, D. G. Lancaster, and F. K. Tittel, "Development of an automated diode-laser-based multicomponent gas sensor," Appl. Opt. 39, 4444-4450 (2000).
    [CrossRef]
  3. D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference frequency generation source," Appl. Phys. B 82, 479-486 (2006).
    [CrossRef]
  4. G. J. Timmermans and H. Morgenstern, "Method and apparatus for controlling severity of cracking operations by near-infrared analysis in the gas phase using fiber optics," U.S. patent 6,512,156 (28 January 2003).
  5. Y. Z. Friedman, "Advanced control of ethylene plants: what works, what doesn"t, and why," Hydrocarbon Asia, July/August 1999, available at www.petrocontrol.com.
  6. L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
    [CrossRef]
  7. T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
    [CrossRef]
  8. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  9. S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.
  10. J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
    [CrossRef]
  11. M. L. Bortz and M. M. Fejer, "Annealed proton exchange LiNbO3 waveguides," Opt. Lett. 16, 1844-1846 (1991).
    [CrossRef] [PubMed]
  12. R. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE 2003).
  13. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, 1975), Chap. 13.
  14. K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. 3, 385-391 (1985).
    [CrossRef]
  15. R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).
  16. K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).
  17. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, and P. A. Johnson, "Gas-phase databases for quantitative infrared spectroscopy," Appl. Spectrosc. 58, 1452-1461 (2004).
    [CrossRef] [PubMed]
  18. P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
    [CrossRef]
  19. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN," Opt. Lett. 27, 179-181 (2002).
    [CrossRef]
  20. R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).
  21. C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
    [CrossRef]
  22. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
    [CrossRef]

2006 (2)

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference frequency generation source," Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

2005 (1)

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

2004 (1)

2003 (1)

G. J. Timmermans and H. Morgenstern, "Method and apparatus for controlling severity of cracking operations by near-infrared analysis in the gas phase using fiber optics," U.S. patent 6,512,156 (28 January 2003).

2002 (1)

2000 (2)

D. Richter, D. G. Lancaster, and F. K. Tittel, "Development of an automated diode-laser-based multicomponent gas sensor," Appl. Opt. 39, 4444-4450 (2000).
[CrossRef]

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

1997 (2)

1995 (1)

L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
[CrossRef]

1993 (1)

P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

1991 (1)

1985 (2)

C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
[CrossRef]

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. 3, 385-391 (1985).
[CrossRef]

1982 (1)

J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
[CrossRef]

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Bamford, D.

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

Bamford, D. J.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

Bortz, M. L.

Brown, W. L.

C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
[CrossRef]

Burns, W. K.

L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
[CrossRef]

Byer, R.

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

Byer, R. L.

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

Chiang, K. S.

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. 3, 385-391 (1985).
[CrossRef]

Chu, P. M.

Curl, R. F.

Deacon, D.

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

Fejer, M.

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN," Opt. Lett. 27, 179-181 (2002).
[CrossRef]

M. L. Bortz and M. M. Fejer, "Annealed proton exchange LiNbO3 waveguides," Opt. Lett. 16, 1844-1846 (1991).
[CrossRef] [PubMed]

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

Field, S.

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

Friedman, Y. Z.

Y. Z. Friedman, "Advanced control of ethylene plants: what works, what doesn"t, and why," Hydrocarbon Asia, July/August 1999, available at www.petrocontrol.com.

Fujimura, M.

Goldberg, L.

L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
[CrossRef]

Huang, L.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

Jackel, J. L.

C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
[CrossRef]

J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
[CrossRef]

Johnson, P. A.

Johnson, T. J.

Jundt, D.

Jundt, D. H.

Kanbara, H.

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Kurz, J. R.

Lancaster, D. G.

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

McElhanon, R. W.

L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
[CrossRef]

Mine, Y.

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Morgenstern, H.

G. J. Timmermans and H. Morgenstern, "Method and apparatus for controlling severity of cracking operations by near-infrared analysis in the gas phase using fiber optics," U.S. patent 6,512,156 (28 January 2003).

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Parameswaran, K. R.

Patterson, T. L.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

Petrov, K. P.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

T. Töpfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, "Room-temperature mid-infrared laser sensor for trace gas detection," Appl. Opt. 36, 8042-8049 (1997).
[CrossRef]

Rice, C. E.

C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
[CrossRef]

Rice, E. E.

J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
[CrossRef]

Richter, D.

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference frequency generation source," Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

D. Richter, D. G. Lancaster, and F. K. Tittel, "Development of an automated diode-laser-based multicomponent gas sensor," Appl. Opt. 39, 4444-4450 (2000).
[CrossRef]

Roderick, G. C.

Roth, A. P.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

Roussev, R.

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

Roussev, R. V.

Route, R. K.

Ryan, A. T.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

Sams, R. L.

Sharpe, S. W.

Sinha, S.

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Sridharan, A.

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Tadanaga, O.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Tadanage, O.

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Thorns, T. P. S.

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

Timmermans, G. J.

G. J. Timmermans and H. Morgenstern, "Method and apparatus for controlling severity of cracking operations by near-infrared analysis in the gas phase using fiber optics," U.S. patent 6,512,156 (28 January 2003).

Tittel, F. K.

Töpfer, T.

Urbanek, K.

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

Veselda, J. J.

J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
[CrossRef]

Weibring, P.

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference frequency generation source," Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

Werle, P.

P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

Wolfe, K.

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Yumoto, J.

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

K. P. Petrov, A. P. Roth, T. L. Patterson, T. P. S. Thorns, L. Huang, A. T. Ryan, and D. J. Bamford, "Efficient difference-frequency mixing of diode lasers in lithium niobate channel waveguides," Appl. Phys. B 7, 777-782 (2000).

P. Werle, R. Mücke, and F. Slemr, "The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy," Appl. Phys. B 57, 131-139 (1993).
[CrossRef]

D. Richter and P. Weibring, "Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference frequency generation source," Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

L. Goldberg, W. K. Burns, and R. W. McElhanon, "Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3," Appl. Phys. Lett. 67, 2910-2912 (1995).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanage, M. Asobe, H. Suzuki, and J. Yumoto, "Broadband difference frequency generation around phase-match singularity," Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

J. L. Jackel, E. E. Rice, and J. J. Veselda, "Proton exchange for high index waveguide in LiNbO3," Appl. Phys. Lett. 41, 607-609 (1982).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides," Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

C. E. Rice, J. L. Jackel, and W. L. Brown, "Measurement of the deuterium concentration profile in a deuterium-exchanged LiNbO3 crystal," J. Appl. Phys. 57, 4437-4440 (1985).
[CrossRef]

J. Lightwave Technol. (1)

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. 3, 385-391 (1985).
[CrossRef]

Opt. Lett. (3)

Other (7)

R. Roussev, S. Sinha, K. Urbanek, R. L. Byer, and M. M. Fejer, "Efficient mid-infrared difference-frequency generation in reverse proton-exchanged PPLN waveguides," Stanford Photonics Research Center Annual Meeting, Stanford, Calif. (2006).

R. Roussev, A. Sridharan, K. Urbanek, R. Byer, and M. Fejer, "Parametric amplification of 1.6 μm signal in anneal- and reverse-proton exchanged waveguides," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, 2003).

R. Roussev, X. Xie, K. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semi-empirical model for annealed proton exchanged waveguides in z-cut lithium niobate," IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE 2003).

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, 1975), Chap. 13.

S. Field, L. Huang, K. Wolfe, D. Bamford, and D. Deacon, "Fabrication of bulk and waveguide PPLN for the generation of wavelengths from 460 nm to 4.3 microns," in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed. (Optical Society of America, 1997), pp. 87-92.

G. J. Timmermans and H. Morgenstern, "Method and apparatus for controlling severity of cracking operations by near-infrared analysis in the gas phase using fiber optics," U.S. patent 6,512,156 (28 January 2003).

Y. Z. Friedman, "Advanced control of ethylene plants: what works, what doesn"t, and why," Hydrocarbon Asia, July/August 1999, available at www.petrocontrol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Calculated wavelength combinations that can be used to produce broadly tunable mid-infrared radiation centered at a given mid-infrared frequency in bulk DFG.

Fig. 2
Fig. 2

Simulation results: location of broad phase-matching resonance for bulk PPLN at two different temperatures and for APE waveguides with two different fabrication recipes. The upper curve is for a recipe that includes annealing at 333 ° C for 21.4 h, and the curve labeled Waveguide (Long Anneal) is for a recipe that includes annealing at 340 ° C for 41 h.

Fig. 3
Fig. 3

Schematic showing the key elements of the waveguide mask design.

Fig. 4
Fig. 4

Schematic of the mid-infrared laser spectrometer.

Fig. 5
Fig. 5

Measured mode indices (symbols) at a wavelength of 632.8 nm for a planar waveguide witness chip, which accompanied the channel waveguide chip through the steps of proton exchange and anneal. An extraordinary step index profile (solid line) calculated using the inverse WKB method is also shown.

Fig. 6
Fig. 6

Mode profiles for a waveguide with a 3 μm wide mode filter and 5 mm long taper. Each profile is taken at a different excitation wavelength, ranging from 1263 nm (upper left) to 1343 nm (lower right).

Fig. 7
Fig. 7

Mode profile for the same waveguide as in Fig. 6 at a wavelength of 931.4 nm .

Fig. 8
Fig. 8

Relative mid-infrared power as a function of idler wavenumber with the pump wavelength fixed at 931.4 nm .

Fig. 9
Fig. 9

Absorption spectrum of methane (30.6 Torr, buffered with nitrogen to 804.4 Torr, 4 cm path length, 300 s scan time), recorded using the experimental apparatus shown in Fig. 4.

Fig. 10
Fig. 10

Absorption spectrum of ethylene (66 Torr, buffered with nitrogen to 794.7 Torr, 4 cm path length, 300 s scan time), recorded using the experimental apparatus shown in Fig. 4.

Fig. 11
Fig. 11

Absorption spectrum of propylene (98.2 Torr, buffered with nitrogen to 800.7 Torr, 4 cm path length, 300 s scan time), recorded using the experimental apparatus shown in Fig. 4.

Fig. 12
Fig. 12

Absorption spectra of the calibrated gas mixture with the composition shown in Table 2 (191.6 Torr of the mixture, buffered with nitrogen to 806.6 Torr, 4 cm path length), recorded using the experimental apparatus shown in Fig. 4. Spectra with two different scan times are shown: 10 s (top) and 300 s (bottom).

Fig. 13
Fig. 13

Average measurement error, as defined by Eq. (9), as a function of scan time.

Tables (3)

Tables Icon

Table 1 Power Budget for the Waveguide Device Prior to Pigtailing

Tables Icon

Table 2 Composition of Calibrated Gas Mixture

Tables Icon

Table 3 Summary of Gas Analysis Results

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 π ( N 3 ν 3 N 2 ν 2 N 1 ν 1 1 Λ ) ,
( Δ k ) ν 2 = 0 ,
ν 1 + ν 2 = ν 3 .
N 1 + ν 1 N 1 ν 1 = N 2 + ν 2 N 2 ν 2 .
N 1 + ν 1 N 1 ν 1 = N 3 + ν 3 N 3 ν 3 .
D ( C , T ) = D ( T ) [ α + ( 1 α ) ( β C + γ ) ] ,
Δ n ( λ , C ) = C ( a 1 + a 2 λ 2 λ 0 2 a 3 λ 2 n sub ( λ ) ) ,
P 1 = η nor P 2 P 3 L 2 ,
Δ χ rms = 1 3 [ ( χ methane , true χ methane , meas χ methane , true ) 2 + ( χ ethylene , true χ ethylene , meas χ ethylene , true ) 2 + ( χ propylene , true χ propylene , meas χ propylene , true ) 2 ] .
P 1 ( L ) = P 2 P 3 η DFG [ 1 exp ( α 1 L 2 ) ( α 1 2 ) ] 2 ,

Metrics