Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors

Not Accessible

Your library or personal account may give you access

Abstract

A multispecies near-infrared diode laser spectrometer has been constructed for measurements of carbon monoxide, carbon dioxide, and methane directly in the exhaust of a static internal combustion engine. A wavelength modulation-division multiplexing scheme was implemented for the two distributed feedback diode lasers. Gas concentration variations were observed for changes in operating conditions such as increasing and decreasing the throttle, adjusting the air–fuel ratio, and engine start-up.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Four-color fiber-coupled mid-infrared laser-absorption sensor for temperature, CO, CO2, and NO at 5 kHz in internal combustion engine vehicle exhaust

Joshua W. Stiborek, Charles J. Schwartz, Nathan J. Kempema, Joseph J. Szente, Michael J. Loos, and Christopher S. Goldenstein
Appl. Opt. 62(32) 8517-8528 (2023)

In situ measurements of nitric oxide in coal-combustion exhaust using a sensor based on a widely tunable external-cavity GaN diode laser

Thomas N. Anderson, Robert P. Lucht, Soyuz Priyadarsan, Kalyan Annamalai, and Jerald A. Caton
Appl. Opt. 46(19) 3946-3957 (2007)

High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

Michael Cundy, Torsten Schucht, Olaf Thiele, and Volker Sick
Appl. Opt. 48(4) B94-B104 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved