Abstract

We report an investigation of two-color six-wave-mixing spectroscopy techniques using picosecond lasers for the detection of atomic hydrogen in an atmospheric-pressure hydrogen–air flame. An ultraviolet laser at 243nm was two-photon-resonant with the 2S1/21S1/2 transition, and a visible probe laser at 656nm was resonant with Hα transitions (n=3n=2). The signal dependence on the polarization of the pump laser was investigated for a two- beam polarization-spectroscopy experimental configuration and for a four- beam grating configuration. A direct comparison of the absolute signal and background levels in the two experimental geometries demonstrated a significant advantage to using the four-beam grating geometry over the simpler two-beam configuration. Picosecond laser pulses provided sufficient time resolution to investigate hydrogen collisions in the atmospheric-pressure flame. Time-resolved two-color laser-induced fluorescence was used to measure an n=2 population lifetime of 110 ps, and time-resolved two-color six-wave-mixing spectroscopy was used to measure a coherence lifetime of 76 ps. Based on the collisional time scale, we expect that the six-wave-mixing signal dependence on collisions is significantly reduced with picosecond laser pulses when compared to laser pulse durations on the nanosecond time scale.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
    [CrossRef]
  2. P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
    [CrossRef]
  3. S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, "Concentration profiles in rich and sooting ethylene flames," in Proceedings of the Twenty-First Symposium (International) on Combustion (Combustion Institute, 1986), pp. 1033-1045.
  4. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, "Two-photon-excited fluorescence measurement of hydrogen atoms in flames," Opt. Lett. 8, 365-367 (1983).
    [CrossRef] [PubMed]
  5. M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, and P. L. Zhang, "Three-photon-excited fluorescence detection of atomic hydrogen in an atmospheric-pressure flame," Opt. Lett. 9, 211-213 (1984).
    [CrossRef] [PubMed]
  6. J. T. Salmon and N. M. Laurendeau, "Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H2/O2/N2 flat flames with photoionization controlled-loss spectroscopy," Appl. Opt. 26, 2881-2891 (1987).
    [CrossRef] [PubMed]
  7. J. T. Salmon and N. M. Laurendeau, "Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames," Combust. Flame 74, 221-231 (1988).
    [CrossRef]
  8. J. E. M. Goldsmith, "Photochemical effects in 243 nm two-photon excitation of atomic hydrogen in flames," Appl. Opt. 28, 1206-1213 (1989).
    [CrossRef] [PubMed]
  9. J. E. M. Goldsmith and N. M. Laurendeau, "Single-laser two-step fluorescence detection of atomic hydrogen in flames," Opt. Lett. 15, 576-578 (1990).
    [CrossRef] [PubMed]
  10. U. Czarnetzki, K. Miyazaki, T. Kajiwara, K. Muraoka, M. Maeda, and H. F. Döbele, "Comparison of various two-photon excitation schemes for laser-induced fluorescence spectroscopy in atomic hydrogen," J. Opt. Soc. Am. B 11, 2155-2162 (1994).
    [CrossRef]
  11. J. Seidel, "Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line," Phys. Rev. Lett. 57, 2154-2156 (1986).
    [CrossRef] [PubMed]
  12. K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
    [CrossRef] [PubMed]
  13. R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
    [CrossRef]
  14. K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
    [CrossRef]
  15. J. A. Gray and R. Trebino, "Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames," Chem. Phys. Lett. 216, 519-524 (1993).
    [CrossRef]
  16. J. A. Gray, J. E. M. Goldsmith, and R. Trebino, "Detection of atomic hydrogen by two-color laser-induced grating spectroscopy," Opt. Lett. 18, 444-446 (1993).
    [CrossRef] [PubMed]
  17. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
    [CrossRef]
  18. T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
    [CrossRef]
  19. S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
    [CrossRef]
  20. W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO No. 7 (Stanford University, 1986).
    [PubMed]
  21. X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
    [CrossRef]
  22. J. B. Norman and R. W. Field, "Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
    [CrossRef]
  23. S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
    [CrossRef]
  24. U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
    [CrossRef]
  25. D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
    [CrossRef]

2004 (2)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

2003 (1)

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

2002 (1)

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

2000 (1)

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

1999 (1)

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

1998 (1)

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
[CrossRef]

1995 (2)

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

1994 (2)

D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
[CrossRef]

U. Czarnetzki, K. Miyazaki, T. Kajiwara, K. Muraoka, M. Maeda, and H. F. Döbele, "Comparison of various two-photon excitation schemes for laser-induced fluorescence spectroscopy in atomic hydrogen," J. Opt. Soc. Am. B 11, 2155-2162 (1994).
[CrossRef]

1993 (2)

J. A. Gray and R. Trebino, "Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames," Chem. Phys. Lett. 216, 519-524 (1993).
[CrossRef]

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, "Detection of atomic hydrogen by two-color laser-induced grating spectroscopy," Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

1990 (2)

J. E. M. Goldsmith and N. M. Laurendeau, "Single-laser two-step fluorescence detection of atomic hydrogen in flames," Opt. Lett. 15, 576-578 (1990).
[CrossRef] [PubMed]

J. B. Norman and R. W. Field, "Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

1989 (1)

1988 (1)

J. T. Salmon and N. M. Laurendeau, "Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames," Combust. Flame 74, 221-231 (1988).
[CrossRef]

1987 (1)

1986 (3)

J. Seidel, "Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line," Phys. Rev. Lett. 57, 2154-2156 (1986).
[CrossRef] [PubMed]

K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
[CrossRef] [PubMed]

U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
[CrossRef]

1984 (1)

1983 (1)

Agrup, S.

S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

Aldén, M.

S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, and P. L. Zhang, "Three-photon-excited fluorescence detection of atomic hydrogen in an atmospheric-pressure flame," Opt. Lett. 9, 211-213 (1984).
[CrossRef] [PubMed]

Ashfold, M. N. R.

D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
[CrossRef]

Bertagnolli, K. E.

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
[CrossRef]

Blint, R. J.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, "Concentration profiles in rich and sooting ethylene flames," in Proceedings of the Twenty-First Symposium (International) on Combustion (Combustion Institute, 1986), pp. 1033-1045.

Bui-Pham, M. N.

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
[CrossRef]

Candel, S.

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

Chen, X. L.

X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Czarnetzki, U.

Danzmann, K.

K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
[CrossRef] [PubMed]

de la Rosa, M. I.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

DiTeodoro, F.

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

Dixon, R. N.

D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
[CrossRef]

Döbele, H. F.

Dux, R.

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

Farrow, R. L.

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

Field, R. W.

J. B. Norman and R. W. Field, "Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

Goldsmith, J. E. M.

Gonzalo, A. B.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Gray, J. A.

J. A. Gray and R. Trebino, "Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames," Chem. Phys. Lett. 216, 519-524 (1993).
[CrossRef]

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, "Detection of atomic hydrogen by two-color laser-induced grating spectroscopy," Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

Grützmacher, K.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
[CrossRef] [PubMed]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

Harris, S. J.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, "Concentration profiles in rich and sooting ethylene flames," in Proceedings of the Twenty-First Symposium (International) on Combustion (Combustion Institute, 1986), pp. 1033-1045.

Just, T.

U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
[CrossRef]

Kajiwara, T.

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

King, G. B.

Kohse-Höinghaus, K.

U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

Laurendeau, N. M.

Lucht, R. P.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, "Two-photon-excited fluorescence measurement of hydrogen atoms in flames," Opt. Lett. 8, 365-367 (1983).
[CrossRef] [PubMed]

Maeda, M.

Meier, U.

U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
[CrossRef]

Miyazaki, K.

Mordaunt, D. H.

D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
[CrossRef]

Muraoka, K.

Norman, J. B.

J. B. Norman and R. W. Field, "Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

Ossler, F.

S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

Patterson, B. D.

X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Reichardt, T. A.

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

Renard, P.-H.

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

Reynolds, W. C.

W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO No. 7 (Stanford University, 1986).
[PubMed]

Rolon, J. C.

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

Roy, S.

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

Salmon, J. T.

Schawlow, A. L.

Seidel, J.

J. Seidel, "Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line," Phys. Rev. Lett. 57, 2154-2156 (1986).
[CrossRef] [PubMed]

Settersten, T. B.

X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Steiger, A.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Steiger, M.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Svanberg, S.

Sweeney, D. W.

Thévenin, D.

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

Trebino, R.

J. A. Gray and R. Trebino, "Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames," Chem. Phys. Lett. 216, 519-524 (1993).
[CrossRef]

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, "Detection of atomic hydrogen by two-color laser-induced grating spectroscopy," Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

Weiner, A. M.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, "Concentration profiles in rich and sooting ethylene flames," in Proceedings of the Twenty-First Symposium (International) on Combustion (Combustion Institute, 1986), pp. 1033-1045.

Wende, B.

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
[CrossRef] [PubMed]

Wendt, W.

Zhang, P. L.

Appl. Opt. (2)

Appl. Phys. B (2)

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, "Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames," Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

S. Agrup, F. Ossler, and M. Aldén, "Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence," Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

Chem. Phys. Lett. (3)

U. Meier, K. Kohse-Höinghaus, and T. Just, "H and O atom detection for combustion applications: study of quenching and laser photolysis effects," Chem. Phys. Lett. 126, 567-573 (1986).
[CrossRef]

J. A. Gray and R. Trebino, "Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames," Chem. Phys. Lett. 216, 519-524 (1993).
[CrossRef]

X. L. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Combust. Flame (3)

J. T. Salmon and N. M. Laurendeau, "Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames," Combust. Flame 74, 221-231 (1988).
[CrossRef]

P.-H. Renard, J. C. Rolon, D. Thévenin, and S. Candel, "Investigations of heat release, extinction, and time evolution of the flame surface for a nonpremixed flame interacting with a vortex," Combust. Flame 117, 189-205 (1999).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

J. Appl. Phys. (1)

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, "Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence," J. Appl. Phys. 83, 2315-2326 (1998).
[CrossRef]

J. Chem. Phys. (4)

T. A. Reichardt, F. DiTeodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

J. B. Norman and R. W. Field, "Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, "Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm)," J. Chem. Phys. 100, 7360-7375 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phys. Rev. E (1)

R. Dux, K. Grützmacher, M. I. de la Rosa, and B. Wende, "Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy," Phys. Rev. E 51, 1416-1427 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

J. Seidel, "Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line," Phys. Rev. Lett. 57, 2154-2156 (1986).
[CrossRef] [PubMed]

K. Danzmann, K. Grützmacher, and B. Wende, "Doppler-free 2-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma," Phys. Rev. Lett. 57, 2151-2153 (1986).
[CrossRef] [PubMed]

Other (2)

W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO No. 7 (Stanford University, 1986).
[PubMed]

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, "Concentration profiles in rich and sooting ethylene flames," in Proceedings of the Twenty-First Symposium (International) on Combustion (Combustion Institute, 1986), pp. 1033-1045.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy level diagram.

Fig. 2
Fig. 2

Experimental arrangement: λ / 2 , half-wave plate; P, α-BBO polarizer; BS, beam splitter; ND, neutral–density filter; L, lens; WP: half- or quarter-wave plate; M, kinetically mounted mirror; Ap, aperture; IF, 656 nm interference filter; Mono, monochromator.

Fig. 3
Fig. 3

TC-PS and TC-LIF signals as a function of the rotation of a quarter-wave plate in the Pu1 beam. Pu1 polarization is indicated along the abscissa; V, linear vertical; C, circular.

Fig. 4
Fig. 4

TC-PS signal as a function of of the rotation of a half-wave plate in the Pu1 beam. Pu1 polarization is indicated along the abscissa; H, horizontal; V, vertical.

Fig. 5
Fig. 5

TC-6WM (four-beam configuration) and TC-LIF signals as a function of the angle between the polarization of the two pump beams.

Fig. 6
Fig. 6

TC-6WM and TC-LIF signals as a function of the delay between pump and probe pulses. Single-exponential fits to the data in the tails of the decay are shown as solid lines.

Metrics