Abstract

Time-resolved two-color resonant four-wave-mixing spectroscopy was used to investigate collisions affecting the ground electronic state of the hydroxyl radical. Picosecond laser pulses provided adequate time resolution for measurements in an atmospheric-pressure methane–air flame. The grating spectroscopy technique used a combination of double resonance, time-delayed probing, and independent control of the polarization of each of the four fields involved in the wave-mixing process to enable measurement of the decay of laser-induced population, alignment, and orientation, as well as state-to-state transfer of these three moments. Results are presented for individual rotational levels of OH in XΠ3/22(v=1).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Species and Temperature (Plenum, 1981).
  2. K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-279 (1994).
    [CrossRef]
  3. K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola, "Detection of OH in flames by using polarization spectroscopy," Appl. Opt. 32, 919-924 (1993).
    [CrossRef] [PubMed]
  4. T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
    [CrossRef]
  5. T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990).
    [CrossRef]
  6. T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999).
    [CrossRef]
  7. R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
    [CrossRef]
  8. C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983).
    [CrossRef]
  9. P. M. Doherty and D. R. Crosley, "Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,"Appl. Opt. 23, 713-721 (1984).
    [CrossRef] [PubMed]
  10. A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
    [CrossRef]
  11. S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
    [CrossRef]
  12. R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984).
    [CrossRef]
  13. K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
    [CrossRef]
  14. D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999).
    [CrossRef]
  15. K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982).
    [CrossRef]
  16. P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
    [CrossRef]
  17. I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
    [CrossRef]
  18. P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
    [CrossRef]
  19. D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
    [CrossRef]
  20. K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
    [CrossRef]
  21. G. Zizak, G. A. Petrucci, C. L. Stevenson, and J. D. Winefordner, "Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches," Appl. Opt. 30, 5270-5275 (1991).
    [CrossRef] [PubMed]
  22. J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
    [CrossRef]
  23. A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
    [CrossRef]
  24. R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).
  25. H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
    [CrossRef]
  26. M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
    [CrossRef] [PubMed]
  27. P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
    [CrossRef]
  28. P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002).
    [CrossRef]
  29. T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
    [CrossRef]
  30. S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
    [CrossRef]
  31. A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000).
    [CrossRef]
  32. X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
    [CrossRef]
  33. M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005).
    [CrossRef] [PubMed]
  34. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
    [CrossRef]
  35. W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO no. 7 (Stanford University, 1986).
  36. J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
    [CrossRef]
  37. T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993).
    [CrossRef]
  38. Y. Prior, "A complete expression for the third-order susceptibility (χ(3))--perturbative and diagrammatic approaches," IEEE J. Quantum Electron. QE-20, 37-42 (1984).
    [CrossRef]
  39. J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986).
    [CrossRef]
  40. S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
    [CrossRef]
  41. F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999).
    [CrossRef]
  42. E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001).
    [CrossRef]
  43. J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
    [CrossRef]
  44. T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978).
    [CrossRef]
  45. T. B. Settersten and X. Chen, "Measurement of collision-induced relaxation of population, orientation, and alignment using time-resolved two-color resonant four-wave-mixing spectroscopy," (to be published).
  46. T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
    [CrossRef]
  47. K. Blum, Density Matrix Theory and Applications (Gordon and Breach, 1996).
  48. P. H. Paul, DRFM: A new package for the evaluation of gas-phase transport properties, Tech. Rep. SAND98-8203 (Sandia National Laboratories, 1997).
  49. P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
    [CrossRef]
  50. R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).
  51. T. A. Reichardt and R. P. Lucht, "Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis," J. Opt. Soc. Am. B 13, 2807-2816 (1996).
    [CrossRef]
  52. S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
    [CrossRef]

2005

M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005).
[CrossRef] [PubMed]

2004

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
[CrossRef] [PubMed]

2003

T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
[CrossRef]

H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
[CrossRef]

2002

J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
[CrossRef]

P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002).
[CrossRef]

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

2001

E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001).
[CrossRef]

2000

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000).
[CrossRef]

1999

D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999).
[CrossRef]

F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999).
[CrossRef]

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999).
[CrossRef]

1998

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
[CrossRef]

1997

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

1996

S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
[CrossRef]

T. A. Reichardt and R. P. Lucht, "Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis," J. Opt. Soc. Am. B 13, 2807-2816 (1996).
[CrossRef]

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
[CrossRef]

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).

1995

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

1994

S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
[CrossRef]

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-279 (1994).
[CrossRef]

1993

K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola, "Detection of OH in flames by using polarization spectroscopy," Appl. Opt. 32, 919-924 (1993).
[CrossRef] [PubMed]

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

1992

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

1991

D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
[CrossRef]

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
[CrossRef]

G. Zizak, G. A. Petrucci, C. L. Stevenson, and J. D. Winefordner, "Ground state saturated population distribution of OH in an acetylene-air flame measured by two optical double resonance pump-probe approaches," Appl. Opt. 30, 5270-5275 (1991).
[CrossRef] [PubMed]

1990

T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990).
[CrossRef]

J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

1986

J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986).
[CrossRef]

1984

Y. Prior, "A complete expression for the third-order susceptibility (χ(3))--perturbative and diagrammatic approaches," IEEE J. Quantum Electron. QE-20, 37-42 (1984).
[CrossRef]

P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
[CrossRef]

R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984).
[CrossRef]

P. M. Doherty and D. R. Crosley, "Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,"Appl. Opt. 23, 713-721 (1984).
[CrossRef] [PubMed]

1983

C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983).
[CrossRef]

1982

K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982).
[CrossRef]

1978

T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978).
[CrossRef]

Aminoff, C. G.

Andresen, P.

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
[CrossRef]

Aristov, N.

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

Beaud, P.

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Beushausen, V.

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

Blum, K.

K. Blum, Density Matrix Theory and Applications (Gordon and Breach, 1996).

Blumberg, W. A. M.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Brockhinke, A.

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

Butenhoff, T. J.

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

Caledonia, G. E.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Chen, X.

X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

T. B. Settersten and X. Chen, "Measurement of collision-induced relaxation of population, orientation, and alignment using time-resolved two-color resonant four-wave-mixing spectroscopy," (to be published).

Comes, F. J.

K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982).
[CrossRef]

Copeland, R. A.

R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984).
[CrossRef]

Costen, M. L.

M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005).
[CrossRef] [PubMed]

M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
[CrossRef] [PubMed]

H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
[CrossRef]

Crichton, H. J.

M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
[CrossRef] [PubMed]

H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
[CrossRef]

Cronin, J. F.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Crosley, D. R.

I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
[CrossRef]

R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984).
[CrossRef]

P. M. Doherty and D. R. Crosley, "Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,"Appl. Opt. 23, 713-721 (1984).
[CrossRef] [PubMed]

Daily, J. W.

J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
[CrossRef]

Di Teodoro, F.

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999).
[CrossRef]

Dodd, J. A.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Doherty, P. M.

Dreier, T.

J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
[CrossRef]

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990).
[CrossRef]

Dreizler, A.

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Species and Temperature (Plenum, 1981).

Eppink, A.

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

Farrow, R. L.

T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
[CrossRef]

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999).
[CrossRef]

Fayer, M. D.

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Field, R. W.

J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

Foggi, P.

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

Fourkas, J. T.

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Franzke, D.

Frey, H.-M.

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986).
[CrossRef]

Gerber, T.

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Gericke, K.-H.

K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982).
[CrossRef]

Giancola, W. C.

Gray, J. A.

T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
[CrossRef]

Green, B. D.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Greene, C. H.

C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983).
[CrossRef]

Gustafson, T. K.

T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

Häusler, D.

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
[CrossRef]

Himmelhaus, M.

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

Holtzclaw, K. W.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Jeffries, J. B.

I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
[CrossRef]

Johnson, B. R.

T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
[CrossRef]

Kaivola, M.

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

Kienle, R.

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
[CrossRef]

Kliner, D. A. V.

D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
[CrossRef]

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-279 (1994).
[CrossRef]

Kouzov, A. P.

P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002).
[CrossRef]

A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000).
[CrossRef]

Kreutner, W.

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

Lee, M. P.

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
[CrossRef]

Linne, M. A.

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

Lipson, S. J.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Liu, K.

D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
[CrossRef]

Lucht, R. P.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999).
[CrossRef]

T. A. Reichardt and R. P. Lucht, "Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis," J. Opt. Soc. Am. B 13, 2807-2816 (1996).
[CrossRef]

Lülf, H. W.

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
[CrossRef]

Macdonald, R. G.

D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
[CrossRef]

Maier, R.

McCormack, E. F.

E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001).
[CrossRef]

F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999).
[CrossRef]

McKendrick, K. G.

M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005).
[CrossRef] [PubMed]

M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
[CrossRef] [PubMed]

H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
[CrossRef]

Mischler, B.

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Norman, J. B.

J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

Nyholm, K.

Patterson, B. D.

X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Paul, P. H.

P. H. Paul, DRFM: A new package for the evaluation of gas-phase transport properties, Tech. Rep. SAND98-8203 (Sandia National Laboratories, 1997).

Petrucci, G. A.

Prior, Y.

Y. Prior, "A complete expression for the third-order susceptibility (χ(3))--perturbative and diagrammatic approaches," IEEE J. Quantum Electron. QE-20, 37-42 (1984).
[CrossRef]

Radi, P. P.

P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002).
[CrossRef]

A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000).
[CrossRef]

P. Beaud, P. P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, and T. Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Rahmann, U.

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

Rahn, L. A.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
[CrossRef]

S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
[CrossRef]

Rakestraw, D. J.

T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990).
[CrossRef]

Reichardt, T. A.

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, "Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements," Appl. Opt. 38, 6951-6961 (1999).
[CrossRef]

T. A. Reichardt and R. P. Lucht, "Degenerate four-wave mixing spectroscopy with short-pulse lasers: theoretical analysis," J. Opt. Soc. Am. B 13, 2807-2816 (1996).
[CrossRef]

Reynolds, W. C.

W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO no. 7 (Stanford University, 1986).

Rohlfing, E. A.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

Roy, S.

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

Sarajlic, E.

E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001).
[CrossRef]

Schleipen, J.

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

Schreel, K.

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

Settersten, T. B.

X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
[CrossRef]

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

T. B. Settersten and X. Chen, "Measurement of collision-induced relaxation of population, orientation, and alignment using time-resolved two-color resonant four-wave-mixing spectroscopy," (to be published).

Shappert, C. M.

Sonnenfroh, D. M.

D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
[CrossRef]

Stevenson, C. L.

Suvernev, A. A.

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

Tadday, R.

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

ter Meulen, J. J.

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

Tobai, J.

J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
[CrossRef]

Trebino, R.

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

Tzannis, A. P.

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

Tzannis, A.-P.

Upschulte, B. L.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

Vaccaro, P. H.

T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
[CrossRef]

Wasserman, T. A. W.

T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
[CrossRef]

Williams, S.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
[CrossRef]

S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
[CrossRef]

Winefordner, J. D.

Wysong, I. J.

I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
[CrossRef]

Yee, T. K.

J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986).
[CrossRef]

T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978).
[CrossRef]

Zare, R. N.

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
[CrossRef]

S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
[CrossRef]

C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983).
[CrossRef]

Zizak, G.

Appl. Opt.

Appl. Phys. B

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments," Appl. Phys. B 63, 403-418 (1996).

T. Dreier and D. J. Rakestraw, "Degenerate four-wave mixing diagnostics on OH and NH radicals in flames," Appl. Phys. B 50, 479-485 (1990).
[CrossRef]

R. Kienle, M. P. Lee, and K. Kohse-Höinghaus, "A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence," Appl. Phys. B 62, 583-599 (1996).
[CrossRef]

A. Brockhinke, W. Kreutner, U. Rahmann, K. Kohse-Höinghaus, T. B. Settersten, and M. A. Linne, "Time-, wavelength-, and polarization-resolved measurements of OH (A2Σ+) picosecond laser-induced fluorescence in atmospheric-pressure flames," Appl. Phys. B 69, 477-485 (1999).
[CrossRef]

Chem. Phys.

K.-H. Gericke and F. J. Comes, "Energy partitioning in the reaction O(1D) + H2O → OH + OH. V. Rotational relaxation of OH (X2Π, v″, J″)," Chem. Phys. 65, 113-121 (1982).
[CrossRef]

Chem. Phys. Lett.

A. Dreizler, R. Tadday, A. A. Suvernev, M. Himmelhaus, T. Dreier, and P. Foggi, "Measurement of orientational relaxation times of OH in a flame using picosecond time-resolved polarization spectroscopy," Chem. Phys. Lett. 240, 315-323 (1995).
[CrossRef]

P. P. Radi, H.-M. Frey, B. Mischler, A. P. Tzannis, P. Beaud, and T. Gerber, "Stimulated emission pumping of OH and NH in flames by using two-color resonant four-wave mixing," Chem. Phys. Lett. 265, 271-276 (1997).
[CrossRef]

T. B. Settersten, R. L. Farrow, and J. A. Gray, "Infrared-ultraviolet double-resonance spectroscopy of OH in a flame," Chem. Phys. Lett. 369, 584-590 (2003).
[CrossRef]

X. Chen, B. D. Patterson, and T. B. Settersten, "Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy," Chem. Phys. Lett. 388, 358-362 (2004).
[CrossRef]

Combust. Flame

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, "Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames," Combust. Flame 137, 523-537 (2004).
[CrossRef]

IEEE J. Quantum Electron.

Y. Prior, "A complete expression for the third-order susceptibility (χ(3))--perturbative and diagrammatic approaches," IEEE J. Quantum Electron. QE-20, 37-42 (1984).
[CrossRef]

J. G. Fujimoto and T. K. Yee, "Diagrammatic density matrix theory of transient four-wave mixing and the measurement of transient phenomena," IEEE J. Quantum Electron. QE-22, 1215-1228 (1986).
[CrossRef]

J. Chem. Phys.

S. Williams, R. N. Zare, and L. A. Rahn, "Reduction of degenerate four-wave mixing spectra to relative populations I. Weak-field limit," J. Chem. Phys. 101, 1072-1092 (1994).
[CrossRef]

M. L. Costen and K. G. McKendrick, "Orientation and alignment moments in two-color polarization spectroscopy," J. Chem. Phys. 122, 164309 (2005).
[CrossRef] [PubMed]

S. Williams, E. A. Rohlfing, L. A. Rahn, and R. N. Zare, "Two-color resonant four-wave mixing: Analytical expressions for signal intensity," J. Chem. Phys. 106, 3090-3102 (1997).
[CrossRef]

H. J. Crichton, M. L. Costen, and K. G. McKendrick, "Effect of collisions on one-color polarization spectroscopy of OH A2Σ+ − X2Π," J. Chem. Phys. 119, 9461-9468 (2003).
[CrossRef]

M. L. Costen, H. J. Crichton, and K. G. McKendrick, "Measurement of orientation and alignment moment relaxation by polarization spectroscopy: Theory and experiment," J. Chem. Phys. 120, 7910-7926 (2004).
[CrossRef] [PubMed]

P. Andresen, N. Aristov, V. Beushausen, D. Häusler, and H. W. Lülf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with with H2 and D2," J. Chem. Phys. 95, 5763-5774 (1991).
[CrossRef]

I. J. Wysong, J. B. Jeffries, and D. R. Crosley, "Parity propensities in rotational energy transfer of OH X2Πi with helium," J. Chem. Phys. 94, 7547-7549 (1991).
[CrossRef]

P. Andresen, D. Häusler, and H. W. Lülf, "Selective Λ-doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π½ astronomical maser," J. Chem. Phys. 81, 571-572 (1984).
[CrossRef]

D. M. Sonnenfroh, R. G. Macdonald, and K. Liu, "A crossed-beam study of the state-resolved integral cross sections for the inelastic scattering of OH (X2Π) with CO and N2," J. Chem. Phys. 94, 6508-6518 (1991).
[CrossRef]

K. Schreel, J. Schleipen, A. Eppink, and J. J. ter Meulen, "State-to-state cross sections for rotational excitation of OH by collisions with He and Ar," J. Chem. Phys. 99, 8713-8722 (1993).
[CrossRef]

T. A. W. Wasserman, P. H. Vaccaro, and B. R. Johnson, "Degenerate four-wave mixing spectroscopy as a probe of orientation and alignment in molecular systems," J. Chem. Phys. 108, 7713-7738 (1998).
[CrossRef]

J. Tobai, T. Dreier, and J. W. Daily, "Rotational level dependence of ground state recovery rates for OH X2Π(v″ = 0) in atmospheric pressure flames using the picosecond saturating-pump degenerate four-wave mixing probe technique," J. Chem. Phys. 116, 4030-4038 (2002).
[CrossRef]

D. A. V. Kliner and R. L. Farrow, "Measurements of ground-state OH rotational energy-transfer rates," J. Chem. Phys. 110, 412-422 (1999).
[CrossRef]

S. Williams, L. A. Rahn, and R. N. Zare, "Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing," J. Chem. Phys. 104, 3947-3955 (1996).
[CrossRef]

R. A. Copeland and D. R. Crosley, "Λ-doublet transfer and propensities in collisions of OH (X2Πi, v = 2) with H2O," J. Chem. Phys. 81, 6400-6402 (1984).
[CrossRef]

J. B. Norman and R. W. Field, "Collision-induced angular momentum reorientation and rotational energy transfer in CaF(A 2Π½)-Ar thermal collisions," J. Chem. Phys. 92, 76-89 (1990).
[CrossRef]

T. J. Butenhoff and E. A. Rohlfing, "Laser-induced gratings in free jets. I. Spectroscopy of predissociating NO2," J. Chem. Phys. 98, 5460-5468 (1993).
[CrossRef]

J. T. Fourkas, R. Trebino, and M. D. Fayer, "The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory,"J. Chem. Phys. 97, 69-77 (1992).
[CrossRef]

C. H. Greene and R. N. Zare, "Determination of product population and alignment using laser-induced fluorescence,"J. Chem. Phys. 78, 6741-6753 (1983).
[CrossRef]

T. A. Reichardt, F. Di Teodoro, R. L. Farrow, S. Roy, and R. P. Lucht, "Collisional dependence of polarization spectroscopy with a picosecond laser," J. Chem. Phys. 113, 2263-2269 (2000).
[CrossRef]

S. Roy, R. P. Lucht, and T. A. Reichardt, "Polarization spectroscopy using short-pulse lasers: Theoretical analysis," J. Chem. Phys. 116, 571-580 (2002).
[CrossRef]

J. Geophys. Res.

K. W. Holtzclaw, B. L. Upschulte, G. E. Caledonia, J. F. Cronin, B. D. Green, S. J. Lipson, W. A. M. Blumberg, and J. A. Dodd, "Rotational relaxation of high-N states of OH (X2Π, v = 1 - 3) by O2," J. Geophys. Res. 102, 4521-4528 (1997).
[CrossRef]

J. Mol. Struct.

R. Tadday, A. Dreizler, A. A. Suvernev, and T. Dreier, "Measurement of orientational relaxation times of OH (A2Σ − X2Π) transitions in atmospheric pressure flames using picosecond time-resolved nonlinear spectroscopy," J. Mol. Struct. 410-411, 85-88 (1997).

J. Opt. Soc. Am. B

J. Phys. B

F. Di Teodoro and E. F. McCormack, "State-selective quantum beat spectroscopy via coherent control of Liouville-pathway interference in two-colour resonant four-wave mixing,"J. Phys. B 32, 4389-4404 (1999).
[CrossRef]

J. Raman Spectrosc.

P. P. Radi and A. P. Kouzov, "State-resolved collisional energy transfer of OH, NH, and H2CO by two-color resonant four-wave mixing spectroscopy," J. Raman Spectrosc. 33, 925-933 (2002).
[CrossRef]

Phys. Rev. A

A. P. Kouzov and P. P. Radi, "Collision-induced resonances in two-color resonant four-wave mixing spectra," Phys. Rev. A 63, 010701 (2000).
[CrossRef]

E. F. McCormack and E. Sarajlic, "Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain," Phys. Rev. A 63, 023406 (2001).
[CrossRef]

T. K. Yee and T. K. Gustafson, "Diagrammatic analysis of the density operator for nonlinear optical calculations: pulsed and cw responses," Phys. Rev. A 18, 1597-1617 (1978).
[CrossRef]

Prog. Energy Combust. Sci.

K. Kohse-Höinghaus, "Laser techniques for the quantitative detection of reactive intermediates in combustion systems," Prog. Energy Combust. Sci. 20, 203-279 (1994).
[CrossRef]

Other

T. B. Settersten and X. Chen, "Measurement of collision-induced relaxation of population, orientation, and alignment using time-resolved two-color resonant four-wave-mixing spectroscopy," (to be published).

K. Blum, Density Matrix Theory and Applications (Gordon and Breach, 1996).

P. H. Paul, DRFM: A new package for the evaluation of gas-phase transport properties, Tech. Rep. SAND98-8203 (Sandia National Laboratories, 1997).

A. C. Eckbreth, Laser Diagnostics for Combustion Species and Temperature (Plenum, 1981).

W. C. Reynolds, The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Tech. Rep. Stanford University Report ME 270 HO no. 7 (Stanford University, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Energy level diagram and (b) experimental arrangement for planar phase matching in TC-RFWM detection of OH.

Fig. 2
Fig. 2

Feynman diagrams describing TC-RFWM using the Ξ-type excitation scheme. The three possible photon interactions generate the signal photon in the k 4 = k 1 k 2 + k 3 phase-matched direction shown in Fig. 1.

Fig. 3
Fig. 3

(a) Energy level diagram showing the “XXYY_PQ” detection scheme for measurement of the total RET rate for X Π 3 / 2 2 ( v = 1 , J = 6.5 f ) . (b) A single-exponential fit to the decay of the normalized TC-RFWM signal for X Π 3 / 2 2 ( v = 1 , J = 6.5 f ) . The open circles represent the experimental data, and the solid curve is a fit to the decay. The data are replotted on a logarithmic scale in the inset.

Fig. 4
Fig. 4

Measured rates of population, orientation, and alignment relaxation for OH X Π 3 / 2 2 ( v = 1 , J = 1.5 12.5 ) . The square symbols are alignment relaxation rates measured previously with TC-PS [32]. The error bar on the J = 3.5 population relaxation measurement is representative of the typical fitting uncertainty.

Fig. 5
Fig. 5

(a) Energy level diagram showing the “RRYY_PP” detection scheme used for measurement of population transfer from J = 4.5 to J = 5.5 e ( Δ J = + 1 ) in X Π 3 / 2 2 ( v = 1 ) . (b) Time-resolved TC-RFWM signals resulting from population transfer from J = 4.5 to J = 2.5 e 7.5 e . Scaling factors used to plot all signals on the same vertical axis are shown on the right-hand side. The curves are spline fits to guide the eye.

Fig. 6
Fig. 6

Comparison of time-resolved TC-RFWM signals resulting from population (open symbols∕solid curve) and orientation (filled symbols∕dashed curve) transfer from J = 4.5 . The TC-RFWM signals were peak-normalized, and the curves are spline fits to guide the eye.

Tables (1)

Tables Icon

Table 1 Detection Schemes Used for Measurement of Population, Orientation, and Alignment Decay a

Equations (189)

Equations on this page are rendered with MathJax. Learn more.

X Π 3 / 2 2 ( v = 1 )
m J
A Σ 2 + X Π 2
H 2 - O 2
X Π 2
A Σ 2 +
A Σ 2 + X Π 2
X Π 2 ( v = 1 )
χ ( 3 )
X Π 3 / 2 2 ( v = 1 )
J
X Π 3 / 2 2 ( v = 0 )
J
X Π 3 / 2 2 ( v = 1 )
J *
A Σ 2 + ( v * = 1 )
J = N + 1 / 2
Π 3 / 2 2
P ( J )
X Π 3 / 2 2 ( 1 , 0 )
Q 11 ( J )
P 11 ( J )
A Σ 2 + X Π 2 ( 1 , 1 )
e e
f f
e f
A Σ 2 +
P 11
J
Q 11
J
3.4 μ m
60   ps
20   Hz
655   nm
3   mJ
0.3 cm 1
15   mm
532   nm
900 μ J
532   nm
12   mJ
( U V )
320   nm
0.5 cm 1
800 μ J
1000   mm
2200   K
N 2
H 2 O
CO 2
2 β = 10 °
5   mm
1   cm
0.5   mm
1000   mm
2 γ = 1 °
sin   γ sin   β = λ pr λ pu ,
λ pu
λ pr
5000 cm 1
550 cm 1
100 μ J
30   nJ
χ ( 3 )
k n
k 4 = k 1 k 2 + k 3
χ ( 3 )
χ ( 3 )
( K = 0 )
( K = 1 )
( K = 2 )
X Π 3 / 2 2 ( v = 0 )
X Π 3 / 2 2 ( v = 1 )
A Σ 2 + ( v * = 0 )
k 4 = k 1 k 2 + k 3
k 4 = k 1 + k 2 + k 3
t n
E n ( r , t ) = ε n ϵ n δ ( t t n ) e i ( ω n t k n · r ) + c .c . ,
ε n
ϵ n
ω n
k n
[ P ( 3 ) · ϵ 4 * ] = C Φ K F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K ) G ( J J J * ; K ) ,
( ω 1 = ω 2 )
( t 1 = t 2 t pu )
N i
C = N i ε 1 ε 2 ε 3 8 i ħ 3 | J * μ ( 1 ) J | 2 2 J + 1 | J μ ( 1 ) J | 2 2 J + 1 .
| P ( 3 ) · ϵ 4 * | 2
S N i 2 I 1 I 2 I 3 B e i 2 B f e 2 ,
I n
B e i
B f e
Φ = e i ( ω 4 t k 4 · r ) e i v · [ k 4 t pr sig + ( k 1 k 2 ) t pu pr ] e Γ f e t pr sig ,
t pr sig
t pu pr
Γ f e
( k 1 k 2 )
2 π / | k 1 k 2 |
16 20 μ m
1.65 μ m / ns
F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K ) = Q 1 Q 2 Q 3 ( 1 ) K Q 2 ( 2 K + 1 ) ( ϵ 1 ) Q 1 ( 1 ) × ( ϵ 2 * ) Q 1 Q 2 ( 1 ) ( ϵ 3 ) Q 2 Q 3 ( 1 ) ( ϵ 4 * ) Q 3 ( 1 ) × ( 1 1 K Q 1 Q 2 Q 1 Q 2 ) × ( 1 1 K Q 3 Q 2 Q 3 Q 2 ) ,
( ϵ n ) q ( 1 )
G ( J J J * ; K ) = ( 2 J + 1 ) { 1 1 K J J J } { 1 1 K J J J * } × e Γ K J t pu pr ,
Γ K J
F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K )
( | G | 2 )
2 Γ K J
| F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K ) G ( J J J * ; K ) | e + Γ K J t pu pr
P 11
Q 11
A Σ 2 + ( v * = 1 ) X Π 2 ( v = 1 )
X Π 3 / 2 2 ( v = 1 )
( β = 0 , γ = 0 )
( β = 5 ° , γ = 1 ° )
J = 1.5
J
< 5 %
F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K ) = 0
tan 1 ( 2 ) = 54.7 °
X Π 3 / 2 2 ( v = 1 )
X Π 3 / 2 2 ( v = 1 )
X Π 3 / 2 2 ( v = 1 )
J = 6.5 f
( 9.0 ± 0.2 ) × 10 9 s 1
| G ( J i J e J f ; 0 ) | 2 e 2 Γ 0 J e t pu pr
Γ 0 J e
J = 6.5 f
4.5 × 10 9 s 1
220   ps
J
1.5
12.5
2.4 × 10 9 s 1
J
J
H 2 O
J
J = 3.5 4.5 f
5.5 f
J = 4.5
Δ J = ± 1 , ± 2 , + 3
J = 5.5 e ( Δ J = + 1 )
J = 3.5 e
5.5 e
( Δ J = ± 1 )
Δ J = ± 2
Δ J = 3
7.5 e
X Π 2 ( v = 1 )
1   ns
m J
| Δ J |
1 9
1 180
1 9.07
1 177
1 9
1 180 2 J 1 J + 1
1 9.07
1 177 2 J 1 J + 1
1 9
1 90 2 J 1 J + 1
1 9.14
1 91.4 2 J 1 J + 1
1 9
1 8,840 2 J 1 J + 1
1 9.09
1 12
1 12.05
1 39,400
1 12 1 J + 1
1 12.05 1 J + 1
1 39 , 400 2 J 1 J + 1
1 60 2 J 1 J + 1
1 7,890 1 J + 1
1 60.2 2 J 1 J + 1
| F ( ϵ 1 ϵ 2 ϵ 3 ϵ 4 ; K ) G ( J J J * ; K ) | e + Γ K J t pu pr
k 4 = k 1 k 2 + k 3
X Π 3 / 2 2 ( v = 1 , J = 6.5 f )
X Π 3 / 2 2 ( v = 1 , J = 6.5 f )
X Π 3 / 2 2 ( v = 1 , J = 1.5 12.5 )
J = 3.5
J = 4.5
J = 5.5 e ( Δ J = + 1 )
X Π 3 / 2 2 ( v = 1 )
J = 4.5
J = 2.5 e 7.5 e
J = 4.5

Metrics