Abstract

Complex-conjugate-resolved Fourier-domain optical coherence tomography, where the quadrature components of the interferogram are obtained by simultaneous acquisition of the first and second harmonics of the phase-modulated interferogram, is applied to multisurface test targets and biological samples. The method provides efficient suppression of the complex-conjugate, dc, and autocorrelation artifacts. A complex-conjugate rejection ratio as high as 70  dB is achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain versus time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  4. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  5. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence tomography," Opt. Lett. 31, 1079-1081 (2006).
    [CrossRef] [PubMed]
  6. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  7. P. Hariharan, B. F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Appl. Opt. 26, 2504-2506 (1987).
    [CrossRef] [PubMed]
  8. J. Schmit and K. Creath, "Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry," Appl. Opt. 34, 3610-3619 (1995).
    [CrossRef] [PubMed]
  9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  10. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
    [CrossRef] [PubMed]
  11. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3 × 3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003).
    [CrossRef] [PubMed]
  12. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
    [CrossRef] [PubMed]
  13. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  14. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004).
    [CrossRef] [PubMed]
  15. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
    [CrossRef]
  16. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
    [CrossRef] [PubMed]
  17. G.-S. Han and S.-W. Kim, "Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting," Appl. Opt. 33, 7321-7325 (1994).
    [CrossRef] [PubMed]
  18. P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
    [CrossRef]
  19. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
    [CrossRef] [PubMed]
  20. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Resolving the complex conjugate ambiguity in Fourier domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
    [CrossRef] [PubMed]

2006 (4)

2005 (4)

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
[CrossRef]

M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (5)

2002 (1)

2000 (2)

1995 (1)

1994 (1)

1987 (1)

Applegate, B. E.

Bajraszewski, T.

Boppart, S. A.

Bouma, B. E.

Cense, B.

Chen, Z.

Choma, M. A.

Creath, K.

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

de Boer, J. F.

Drexler, W.

Eiju, T.

Fercher, A. F.

Fujimoto, J. G.

Gorczynska, I.

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
[CrossRef]

Han, G.-S.

Hariharan, P.

Hitzenberger, C. K.

Ippen, E. P.

Izatt, J. A.

Kane, D. J.

Kartner, F. X.

Kim, S.-W.

Kowalczyk, A.

Leitgeb, R.

Leitgeb, R. A.

Li, X. D.

Luo, W.

Morgner, U.

Nelson, J. S.

Oreb, B. F.

Park, B. H.

Peterson, K. A.

Pierce, M. C.

Pitris, C.

Ralston, T. S.

Sarunic, M. V.

Schmit, J.

Sticker, M.

Szkulmowski, M.

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
[CrossRef]

Tan, W.

Targowski, P.

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
[CrossRef]

Tearney, G. J.

Vakhtin, A. B.

Vakoc, B. J.

Vinegoni, C.

Wojtkowski, M.

Xu, C.

Yang, C.

Yun, S. H.

Zhang, J.

Appl. Opt. (3)

J. Biomed. Opt. (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

Opt. Commun. (1)

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (11)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence tomography," Opt. Lett. 31, 1079-1081 (2006).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3 × 3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003).
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
[CrossRef] [PubMed]

A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Resolving the complex conjugate ambiguity in Fourier domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Experimental setups used for demonstration of two-harmonic FD-OCT imaging biological samples. (a) Type I: acquisition of spectral interferograms using a single detector and scanning monochromator. (b) Type II: acquisition of spectral interferograms using an integrating detector array and spectrograph. PZT, piezo translator; ND, neutral-density filter; BS, beam splitter; SLD, super luminescent diode; 50 / 50 , fiber coupler; PC, polarization control.

Fig. 2
Fig. 2

Points: experimental data on the dependence of the magnitudes of the first- ( H 1 ) and second-harmonic ( H 2 ) signals on the modulation amplitude. Curves:absolute values of the first- and second-order Bessel functions ( J 1 and J 2 ).

Fig. 3
Fig. 3

(Color online) (a) Points: experimental data on the dependence of the magnitudes of the first- ( H 1 ) and third-harmonic ( H 3 ) signals on the modulation amplitude. Curves:absolute values of the first- and third-order Bessel functions ( J 1 and J 3 ). (b) A procedure of determining the modulation amplitude based on the measurement of the J 3 / J 1 ratio.

Fig. 4
Fig. 4

(a) FD-OCT cross-sectional image of a three-surface sample constructed of a microscope cover slide attached to a mirror through a spacer, obtained using the two-harmonic method of acquisition of the complex interferograms, which involves a single photodetector and scanning monochromator (type I experiment; λ = 800   nm ; a m 0 = 0.908   rad , β 0 = 4.25 ). Image size: 256 pixels (depth) × 100 pixels (lateral). (b) FD-OCT image of the same sample obtained using only the real part of the complex interferograms. (c), (d) A-scans indicated by the arrow in (a), obtained using the complex spectral interferogram (c) and using the real part of the spectral interferogram (d).

Fig. 5
Fig. 5

(a) FD-OCT transverse scan of the dorsal side of a Xenopus laevis tadpole (stage 45) obtained using the two-harmonic method of acquisition of the complex interferograms, which involves a single photodetector and scanning monochromator (type I experiment; λ = 800   nm ; a m 0 = 0.908   rad , β 0 = 4.25 ). Image size: 128 pixels (depth) × 200 pixels (lateral). (b) FD-OCT image of the same sample obtained using only the real part of the complex interferograms. (c), (d) A-scans indicated by the arrow in (a), obtained using the complex spectral interferogram (c) and using the real part of the spectral interferogram (d).

Fig. 6
Fig. 6

(a) FD-OCT transverse scan of the dorsal side of a Xenopus tropicalis tadpole (stage 45) obtained using the two-harmonic method of acquisition of the complex interferograms, which involves an InGaAs integrating array detector coupled to a spectrograph (type II experiment; λ = 1300   nm ; a m 0 = 2.77   rad , β 0 = 0.88 ). Image size: 380   pixels ( 2   mm ) , depth × 200 pixels (1.5 mm), lateral. Arrows indicate the A-scans shown in Fig. 7. (b) FD-OCT image of the same sample obtained using only the real part of the complex interferograms.

Fig. 7
Fig. 7

A-scans indicated by arrows in Fig. 6(a): (a), (b) A-scan (I); (c), (d) A-scan (II); (e), (f) A-scan (III). A-scans (a), (c), and (e) are obtained using the complex spectral interferograms. A-scans (b), (d), and (f) are obtained using the real part of the spectral interferograms. On plots (a), (c), and (e), arrows indicate the strongest peak and its complex conjugate. The complex-conjugate rejection ratios are listed. Small, residual dc peaks are visible at zero depth.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I SI ( ω , t ) = I R ( ω ) + I S ( ω ) + 2 [ I R ( ω ) I S ( ω ) ] 1 / 2 × cos [ Δ ϕ S ( ω ) + ϕ 0 ( ω , t ) ] ,
ϕ 0 ( ω , t ) = a m ( ω ) sin   ω m t ,
I SI ( ω , t ) = I R ( ω ) + I S ( ω ) + 2 [ I R ( ω ) I S ( ω ) ] 1 / 2 { J 0 [ a m ( ω ) 2 J 1 [ a m ( ω ) ] sin ω m t   sin   Δ ϕ S ( ω ) + 2 J 2 [ a m ( ω ) ] cos   2 ω m t   cos   Δ ϕ S ( ω ) 2 J 3 [ a m ( ω ) ] sin 3 ω m t   sin   Δ ϕ S ( ω ) + 2 J 4 [ a m ( ω ) ] cos   4 ω m t   cos   Δ ϕ S ( ω ) } .
H 1 [ ω , Δ ϕ S ( ω ) ] = 4 J 1 [ a m ( ω ) ] [ I R ( ω ) I S ( ω ) ] 1 / 2 × sin   Δ ϕ S ( ω ) ,
H 2 [ ω , Δ ϕ S ( ω ) ] = 4 J 2 [ a m ( ω ) ] [ I R ( ω ) I S ( ω ) ] 1 / 2 × cos   Δ ϕ S ( ω ) .
f ( τ ) = 1 { β H 2 [ ω , Δ ϕ S ( ω ) ] i H 1 [ ω , Δ ϕ S ( ω ) ] } .
β = J 1 [ a m ( ω ) ] / J 2 [ a m ( ω ) ]
a m ( ω i ) = a m 0 ω i / ω 0 ,
β ( ω i ) = J 1 ( a m 0 ω i / ω 0 ) / J 2 ( a m 0 ω i / ω 0 ) .

Metrics