## Abstract

Complex-conjugate-resolved Fourier-domain optical coherence tomography,
where the quadrature components of the interferogram are obtained by simultaneous
acquisition of the first and second harmonics of the phase-modulated interferogram, is
applied to multisurface test targets and biological samples. The method provides efficient
suppression of the complex-conjugate, dc, and autocorrelation artifacts. A complex-conjugate
rejection ratio as high as
$70\text{\hspace{0.17em} dB}$ is achieved.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${I}_{\text{SI}}\left(\omega ,t\right)={I}_{\text{R}}\left(\omega \right)+{I}_{\text{S}}\left(\omega \right)+2{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{cos}\left[\Delta {\varphi}_{\text{S}}\left(\omega \right)+{\varphi}_{\text{0}}\left(\omega ,t\right)\right]\text{,}$$
(2)
$${\varphi}_{0}\left(\omega ,t\right)={a}_{m}\left(\omega \right)\text{sin \hspace{0.17em}}{\omega}_{m}t\text{,}$$
(3)
$${I}_{\text{SI}}\left(\omega ,t\right)={I}_{\text{R}}\left(\omega \right)+{I}_{\text{S}}\left(\omega \right)+2{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\left\{{J}_{0}[{a}_{m}\left(\omega \right)-2{J}_{1}\left[{a}_{m}\left(\omega \right)\right]\mathrm{sin}\text{\hspace{0.17em}}{\omega}_{m}t\text{\hspace{0.17em} sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)+2{J}_{2}\left[{a}_{m}\left(\omega \right)\right]\text{cos \hspace{0.17em} 2}{\omega}_{m}t\text{\hspace{0.17em} cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)-2{J}_{3}\left[{a}_{m}\left(\omega \right)\right]\mathrm{sin}\text{\hspace{0.17em}}3{\omega}_{m}t\text{\hspace{0.17em} sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)+2{J}_{4}\left[{a}_{m}\left(\omega \right)\right]\text{cos \hspace{0.17em}}4{\omega}_{m}t\text{\hspace{0.17em} cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)-\dots \right\}\text{.}$$
(4)
$${H}_{1}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]=-4{J}_{1}\left[{a}_{m}\left(\omega \right)\right]{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{sin \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right)\text{,}$$
(5)
$${H}_{2}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]=4{J}_{2}\left[{a}_{m}\left(\omega \right)\right]{\left[{I}_{\text{R}}\left(\omega \right){I}_{\text{S}}\left(\omega \right)\right]}^{1/2}\times \text{cos \hspace{0.17em}}\Delta {\varphi}_{\text{S}}\left(\omega \right).$$
(6)
$$f\left(\tau \right)={\Im}^{-1}\left\{\beta {H}_{2}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]-i{H}_{1}\left[\omega ,\Delta {\varphi}_{\text{S}}\left(\omega \right)\right]\right\}.$$
(7)
$$\beta ={J}_{1}\left[{a}_{m}\left(\omega \right)\right]/{J}_{2}\left[{a}_{m}\left(\omega \right)\right]$$
(8)
$${a}_{m}\left({\omega}_{i}\right)={{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0}\text{,}$$
(9)
$$\beta \left({\omega}_{i}\right)={J}_{1}({{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0})/{J}_{2}({{a}_{m}}^{0}{\omega}_{i}/{\omega}_{0})\mathrm{.}$$