Abstract

We present a novel, to the best of our knowledge, method for measuring the intensity profile of far-IR beams. The method is based on the measurements of nonstationary variation in optical thickness of a fused-silica plate heated by the studied radiation. The optical thickness is observed by means of a reflecting interferometer. Purpose-made experimental setup allows one to measure beams with an aperture of up to 60  mm with a spatial resolution of 1   mm. The accessibility of the utilized technologies and the possibility to easily increase the aperture are the major advantages of this approach. The probable area of application for the method is measurements of beams produced by powerful industrial far-IR lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Glenn F. Knoll, Radiation Detection and Measurement (Wiley, 2000).
  2. V. V. Tarasov and J. G. Jakvshenko, Infrared Systems of "Looking" Type (Logos, 2004).
  3. E. D. Pankov, A. L. Andreev, and G. V. Pol'shhikov, Sources and Receivers of Irradiation (Politekhnika, 1991).
  4. R. W. Bogue, "US company launches first MEMS-based IR detector array," Sens. Rev. 23, 299-301 (2003).
    [CrossRef]
  5. A. G. Zhukov and V. A. Mazeev, "Scanning IR-detector of bolometric array," Prikladnaja fizika , 1, 113 (2006).
  6. J. M. Fleischer and J. M. Darchuk, "Standardizing the measurement of spatial characteristics of optical beams," Proc. SPIE 888, 60-64 (1988).
  7. I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
    [CrossRef]
  8. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  9. V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006).
    [CrossRef] [PubMed]
  10. L. D. Landau and E. M. Lifshic, Theoretical Physics. Fluid Mechanics (Nauka, 1988).
  11. A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
    [CrossRef]
  12. L. D. Landau and E. M. Lifshic, Theoretical Physics. Theory of Elasticity (Nauka, 1988).
  13. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, 1986).
  14. S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
    [CrossRef]
  15. C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).
  16. http://www.4dtechnology.com/4D%20Technology.htm.

2006 (3)

A. G. Zhukov and V. A. Mazeev, "Scanning IR-detector of bolometric array," Prikladnaja fizika , 1, 113 (2006).

V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006).
[CrossRef] [PubMed]

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

2005 (1)

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

2004 (1)

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

2003 (1)

R. W. Bogue, "US company launches first MEMS-based IR detector array," Sens. Rev. 23, 299-301 (2003).
[CrossRef]

2001 (1)

I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
[CrossRef]

1990 (1)

1988 (1)

J. M. Fleischer and J. M. Darchuk, "Standardizing the measurement of spatial characteristics of optical beams," Proc. SPIE 888, 60-64 (1988).

Andreev, A. L.

E. D. Pankov, A. L. Andreev, and G. V. Pol'shhikov, Sources and Receivers of Irradiation (Politekhnika, 1991).

Balembois, F.

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

Bogue, R. W.

R. W. Bogue, "US company launches first MEMS-based IR detector array," Sens. Rev. 23, 299-301 (2003).
[CrossRef]

Chenais, S.

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

Cheragin, N. P.

I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
[CrossRef]

Darchuk, J. M.

J. M. Fleischer and J. M. Darchuk, "Standardizing the measurement of spatial characteristics of optical beams," Proc. SPIE 888, 60-64 (1988).

Deng, Z.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Druon, F.

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

Fan, Z.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Fattinger, C.

Fleischer, J. M.

J. M. Fleischer and J. M. Darchuk, "Standardizing the measurement of spatial characteristics of optical beams," Proc. SPIE 888, 60-64 (1988).

Georges, P.

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

Grischkowsky, D.

He, H.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Jakvshenko, J. G.

V. V. Tarasov and J. G. Jakvshenko, Infrared Systems of "Looking" Type (Logos, 2004).

Kamenetsky, E. E.

Keiding, S.

Khazanov, E. A.

V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006).
[CrossRef] [PubMed]

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

Knoll, Glenn F.

Glenn F. Knoll, Radiation Detection and Measurement (Wiley, 2000).

Kozhevatov, I. E.

V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006).
[CrossRef] [PubMed]

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
[CrossRef]

Kulikova, E. H.

I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshic, Theoretical Physics. Theory of Elasticity (Nauka, 1988).

L. D. Landau and E. M. Lifshic, Theoretical Physics. Fluid Mechanics (Nauka, 1988).

Lifshic, E. M.

L. D. Landau and E. M. Lifshic, Theoretical Physics. Fluid Mechanics (Nauka, 1988).

L. D. Landau and E. M. Lifshic, Theoretical Physics. Theory of Elasticity (Nauka, 1988).

Lucias-Leclin, G.

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

Mazeev, V. A.

A. G. Zhukov and V. A. Mazeev, "Scanning IR-detector of bolometric array," Prikladnaja fizika , 1, 113 (2006).

Mezenov, A. V.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, 1986).

Palashov, O. V.

V. V. Zelenogorsky, A. A. Solovyov, I. E. Kozhevatov, E. E. Kamenetsky, E. A. Rudenchik, O. V. Palashov, D. E. Silin, and E. A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006).
[CrossRef] [PubMed]

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

Pankov, E. D.

E. D. Pankov, A. L. Andreev, and G. V. Pol'shhikov, Sources and Receivers of Irradiation (Politekhnika, 1991).

Pol'shhikov, G. V.

E. D. Pankov, A. L. Andreev, and G. V. Pol'shhikov, Sources and Receivers of Irradiation (Politekhnika, 1991).

Rudenchik, E. A.

Shao, J.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Silin, D. E.

Soloviev, A. A.

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

Solovyov, A. A.

Soms, L. N.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, 1986).

Stepanov, A. I.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, 1986).

Tarasov, V. V.

V. V. Tarasov and J. G. Jakvshenko, Infrared Systems of "Looking" Type (Logos, 2004).

van Exter, M.

Wei, C.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Zelenogorsky, V. V.

Zhukov, A. G.

A. G. Zhukov and V. A. Mazeev, "Scanning IR-detector of bolometric array," Prikladnaja fizika , 1, 113 (2006).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. Chenais, F. Balembois, F. Druon, G. Lucias-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers--Part I: theoretical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, "Study of thermal behaviors in CO2 laser irradiated glass," Opt. Eng. 44, 044202 (2005).

Prikladnaja fizika (1)

A. G. Zhukov and V. A. Mazeev, "Scanning IR-detector of bolometric array," Prikladnaja fizika , 1, 113 (2006).

Proc. SPIE (1)

J. M. Fleischer and J. M. Darchuk, "Standardizing the measurement of spatial characteristics of optical beams," Proc. SPIE 888, 60-64 (1988).

Quantum Electron. (1)

A. A. Soloviev, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, "Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation," Quantum Electron. 36, 939-945 (2006).
[CrossRef]

Radiophys. Quantum Electron. (1)

I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001).
[CrossRef]

Sens. Rev. (1)

R. W. Bogue, "US company launches first MEMS-based IR detector array," Sens. Rev. 23, 299-301 (2003).
[CrossRef]

Other (7)

L. D. Landau and E. M. Lifshic, Theoretical Physics. Fluid Mechanics (Nauka, 1988).

Glenn F. Knoll, Radiation Detection and Measurement (Wiley, 2000).

V. V. Tarasov and J. G. Jakvshenko, Infrared Systems of "Looking" Type (Logos, 2004).

E. D. Pankov, A. L. Andreev, and G. V. Pol'shhikov, Sources and Receivers of Irradiation (Politekhnika, 1991).

L. D. Landau and E. M. Lifshic, Theoretical Physics. Theory of Elasticity (Nauka, 1988).

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, 1986).

http://www.4dtechnology.com/4D%20Technology.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical setup layout: 1, CO 2 -laser; 2, disk chopper; 3, saline wedge; 4, bolometric power meter; 5, flat metallic mirror; 6, spherical metallic mirror; 7, mechanical shutter; 8, fused-silica plate; 9, helium–neon laser; 10, objective; 11, wavefront conjugation unit comprising semi-transparent mirrors 12 and 13; 14, angular filter comprising objective 15 and pinhole 16; 17, CCD camera.

Fig. 2
Fig. 2

Optical thickness variations corresponding to intensity profiles of beams with power 330   mW (a) and 1.8 W (b). Topograms (left pictures) and their horizontal (middle pictures) and vertical (right pictures) cross sections are presented.

Fig. 3
Fig. 3

Experimental test of linearity. Heating beam power is plotted on the horizontal axis, and overall heat-induced variations of the optical thickness on the vertical axis.

Fig. 4
Fig. 4

Plot of optical thickness variations under heating by a CO 2 laser beam with power 14 W. Picture on the left is a topogram; the middle and right pictures represent vertical and horizontal cross sections, respectively. The procedure of nonmonotonicity removal was performed once. The ovals show discontinuities due to poor quality of optics.

Fig. 5
Fig. 5

Variations in optical thickness caused by heating beams with a sharp jump in intensity profile (a topogram on the left and its vertical cross section on the right). Total power of beams: 12.6 W on top, 0.6 W on bottom. The joining procedure is not performed.

Fig. 6
Fig. 6

Dependence of the jump width of optical thickness on time of heating. Intensity profile of heating radiation has a sharp jump. Dash-dotted curve corresponds to 0.5   mm radius of the heating spot, dashed curve corresponding to 1   mm radius, solid curve corresponds to 2 mm radius.

Fig. 7
Fig. 7

Dependence of maximum temperature in a sample on time of heating by a Gaussian beam with a radius of 2   mm and powers of 14 W (solid curve), 3.8 W (dashed curve), and 0.33 W (dotted curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Q = Δ L ( x , y ) d x d y ,
Δ L ( x , y ) i = 0 l { β T ( x , y , z ) + n 0 ε z z 1 2 n 0 3 π i i k l σ k l } d z ,
I = I 1 + I 2 + 2 I 1 I 2     cos ( 2 π λ x θ ) ,
I s ( x ) = 1 d d / 2 d / 2 I ( x ) d x = I 1 + I 2 + 2 I 1 I 2 1 d d / 2 d / 2 cos ( 2 π λ x θ ) d x ,
Γ s Γ = 1 d d / 2 d / 2 cos ( 2 π λ x θ ) d x .
d o p t 0.08 λ 2 Δ L max Δ x .
t exp 0.08 λ 2 Δ L max t m .

Metrics