Abstract

Unexpected irreversible damage occurred repeatedly in the asymmetric bismuth silicate (BSO) photorefractive spatial light modulator under some operation modes, even though the power of the write-light beam does not exceed the optical damage threshold. According to the microscopic surface images and the Raman spectra of the BSO film, sudden rising of temperature in local areas caused by the drift of the photon-induced electrons is responsible for the damage; the damage exists not only on the surface but also inside the BSO crystal. The damage is relative to the structure of the spatial light modulator, the operation mode, and the growth of the BSO crystal. The information provided by the damage is useful for optimizing the structure, the operation modes, and the performance of the photorefractive spatial light modulators.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tavassoli and M. F. Becker, "Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator," Appl. Opt. 43, 1695-1702 (2004).
    [CrossRef] [PubMed]
  2. W. Yu and T. Minemoto, "Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal," Opt. Quantum Electro. 32, 367-382 (2000).
    [CrossRef]
  3. J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
    [CrossRef]
  4. F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).
  5. A. K. Das and S. Mukhopadhyay, "An all-optical matrix multiplication scheme with non-linear material based switching system," Chin. Opt. Lett. 3, 172-175 (2005).
  6. F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
    [CrossRef]
  7. W. D. Johnston, "Optical index damage in LiNbO3 and other pyroelectric insulators," J. Appl. Phys. 41, 3279-3285 (1970).
    [CrossRef]
  8. R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
    [CrossRef]
  9. L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).
  10. R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
    [CrossRef]
  11. A. E. Attard, "Photoconductive and photorefractive effects in BSO," Appl. Opt. 28, 5169-5174 (1989).
    [CrossRef] [PubMed]
  12. M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.
  13. Y. Nagao, H. Sakata, and Y. Mimura, "Improvements in Bi12SiO20 thin-film spatial light modulators," Appl. Opt. 32, 5036-5042 (1993).
    [CrossRef] [PubMed]
  14. S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
    [CrossRef]
  15. A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
    [CrossRef]
  16. C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
    [CrossRef]

2005 (1)

2004 (2)

A. Tavassoli and M. F. Becker, "Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator," Appl. Opt. 43, 1695-1702 (2004).
[CrossRef] [PubMed]

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

2003 (1)

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

2002 (2)

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
[CrossRef]

2000 (1)

W. Yu and T. Minemoto, "Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal," Opt. Quantum Electro. 32, 367-382 (2000).
[CrossRef]

1999 (1)

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

1993 (1)

1992 (1)

L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).

1989 (1)

1973 (1)

S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
[CrossRef]

1971 (1)

R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
[CrossRef]

1970 (1)

W. D. Johnston, "Optical index damage in LiNbO3 and other pyroelectric insulators," J. Appl. Phys. 41, 3279-3285 (1970).
[CrossRef]

1969 (1)

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

Agullo-Lopez, F.

L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).

Akhmedjanov, F. R.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Aldrich, R. E.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
[CrossRef]

R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
[CrossRef]

Arizmendi, L.

L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).

Attard, A. E.

Bass, M.

M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.

Becker, M. F.

Bertolotti, M.

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

Breugnot, S.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Cabrera, J. M.

L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).

Chen, F. S.

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

Chen, H. J.

C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
[CrossRef]

Colin, J.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Das, A. K.

Duric, S.

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Fazio, E.

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

Gajic, R.

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Garzia, F.

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

Golubovi, A.

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Harvill, M. L.

R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
[CrossRef]

Hou, S. L.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
[CrossRef]

R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
[CrossRef]

Huignard, J.-P.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Johnston, W. D.

W. D. Johnston, "Optical index damage in LiNbO3 and other pyroelectric insulators," J. Appl. Phys. 41, 3279-3285 (1970).
[CrossRef]

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Lan, C. W.

C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
[CrossRef]

Landru, N.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Laude, V.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Lauer, R. B.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
[CrossRef]

Mimura, Y.

Minemoto, T.

W. Yu and T. Minemoto, "Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal," Opt. Quantum Electro. 32, 367-382 (2000).
[CrossRef]

Mukhopadhyay, S.

Nagao, Y.

Nikoli, S.

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Rajbenbach, H.

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Sakata, H.

Tavassoli, A.

Tsa, C. B.

C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
[CrossRef]

Tugushev, R. I.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Valcic, A.

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Van Stryland, E.

M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.

Vlad, V.

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

Williams, D. R.

M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.

Wolfe, W. L.

M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.

Yu, W.

W. Yu and T. Minemoto, "Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal," Opt. Quantum Electro. 32, 367-382 (2000).
[CrossRef]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Intl. J. Optoelectron. (1)

L. Arizmendi, J. M. Cabrera, and F. Agullo-Lopez, "Material properties and photorefractive behaviour of BSO family crystals," Intl. J. Optoelectron. 7, 149-180 (1992).

J. Appl. Phys. (4)

R. E. Aldrich, S. L. Hou, and M. L. Harvill, "Electrical and optical properties of Bi12SiO20," J. Appl. Phys. 42, 493-494 (1971).
[CrossRef]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, "Transport process of photoinduced carries in Bi12SiO20," J. Appl. Phys. 44, 2652-2658 (1973).
[CrossRef]

F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389-3396 (1969).
[CrossRef]

W. D. Johnston, "Optical index damage in LiNbO3 and other pyroelectric insulators," J. Appl. Phys. 41, 3279-3285 (1970).
[CrossRef]

J. Cryst. Growth (1)

C. W. Lan, H. J. Chen, and C. B. Tsa, "Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals," J. Cryst. Growth 245, 56-62 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Colin, N. Landru, V. Laude, S. Breugnot, H. Rajbenbach, and J.-P. Huignard, "High-speed photorefractive joint transform correlator using nonlinear filters," J. Opt. A: Pure Appl. Opt. 1, 283-285 (1999).
[CrossRef]

J. Serb. Chem. Soc. (1)

A. Golubovi, S. Nikoli, R. Gajic, S. Duric, and A. Valcic, "The growth and optical properties of Bi12SiO20 single crystals," J. Serb. Chem. Soc. 67, 279-289 (2002).
[CrossRef]

Opt. Quantum Electro. (1)

W. Yu and T. Minemoto, "Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal," Opt. Quantum Electro. 32, 367-382 (2000).
[CrossRef]

Opt. Quantum Electron. (1)

R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, M. K. Kodirov, F. R. Akhmedjanov, and T. Usmanov, "Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges," Opt. Quantum Electron. 36, 807-818 (2004).
[CrossRef]

Proc. SPIE (1)

F. Garzia, E. Fazio, M. Bertolotti, and V. Vlad, "Optical multifunction logic gate based on BSO photorefractive crystal," Proc. SPIE 4987, 311-319 (2003).

Other (1)

M. Bass, E. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, p. 39.13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sectional structure of the SLM.

Fig. 2
Fig. 2

Experiment setup.

Fig. 3
Fig. 3

(Color online) Images of damage areas obtained by the digital camera.

Fig. 4
Fig. 4

(Color online) Microscopic images of the damage areas on both surfaces:(A) on the incident surface of the read-light beam; (B) on the incident surface of the write-light beam.

Fig. 5
Fig. 5

(Color online) Microscopic images of the damage areas on the incident surface of the read-light beam.

Fig. 6
Fig. 6

(Color online) Damage spots on the incident surface of the read-light beam.

Fig. 7
Fig. 7

(Color online) Raman spectra of the damaged area and the undamaged area.

Fig. 8
Fig. 8

Separation of the hole–electron pairs and drift of the photoinduced electrons.

Fig. 9
Fig. 9

Striations structure of BSO and moving electrons.

Tables (1)

Tables Icon

Table 1 Operation Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I o u t ( x , y ) = I i n sin 2 [ π × V ( x , y ) V π ] .

Metrics