Abstract

We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10150)μms 1. Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
    [CrossRef]
  2. M. S. Chun and J. G. Lenard, "Hot rolling of an aluminium alloy using oil/water emulsions," J. Mater. Proc. Technol. 72, 283-292 (1997).
    [CrossRef]
  3. J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
    [CrossRef]
  4. W. Mitsuhashi, "A computational model of echo location," J. Acoust. Soc. Am. 100, 2644 (1996).
    [CrossRef]
  5. W. Mitsuhashi, "Echo location systems," in Intelligent Sensors, H. Yamasaki, ed. (Elsevier, 1996), p. 191.
  6. G. R. Bashford and O. T. von Ramm, "Ultrasound three-dimensional velocity measurements by feature tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 376-384 (1996).
    [CrossRef]
  7. O. Toedter and A. W. Koch, "A simple laser-based distance measuring device," Measurement 20, 121-128 (1997).
    [CrossRef]
  8. L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).
  9. G. Smeets and A. George, "Michelson spectrometer for instantaneous Doppler velocity measurements," J. Phys. E 14, 838-845 (1981).
    [CrossRef]
  10. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  11. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Anemometry (Academic, 1976).
  12. S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
    [CrossRef]
  13. K. Iwata and R. Nagata, "An analysis on fringe formation in holographic interferometry," J. Mod. Opt. 25, 19-39 (1978).
  14. B. C. R. Ewan, "Holographic particle velocity measurement in the Fraunhofer plane," Appl. Opt. 18, 623-626 (1979).
    [CrossRef] [PubMed]
  15. D. S. Vernon, "Phase-based measurement of object velocity in image sequences using the Hough transform," Opt. Eng. 35, 2620-2626 (1996).
    [CrossRef]
  16. M. Kawahashi and H. Hirahara, "Velocity and density field measurements by digital speckle method," Opt. Laser. Technol. 32, 575-582 (2000).
    [CrossRef]
  17. C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
    [CrossRef]
  18. E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
    [CrossRef]
  19. D. Han, M. Wang, and J. Zhou, "Self-mixing speckle interference in DFB lasers," Opt. Express 14, 3312-3317 (2006).
    [CrossRef] [PubMed]
  20. S. K. Özdemir, S. Ito, S. Shinohara, H. Yoshida, and M. Sumi, "Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode," Appl. Opt. 38, 6859-6865 (1999).
    [CrossRef]
  21. S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
    [CrossRef]
  22. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, and S. Fukishima, "Real-time velocity measurement by the use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator," Appl. Opt. 33, 2785-2794 (1994).
    [CrossRef] [PubMed]
  23. I. Yamaguchi, "Speckle displacement and decorrelation in the diffraction and image fields for small object deformation," Opt. Acta 28, 1359-1376 (1981).
    [CrossRef]
  24. M. Sjödahl, "Calculation of speckle displacement, decorrelation, and object-point location in imaging systems," Appl. Opt. 34, 7998-8010 (1995).
    [CrossRef] [PubMed]
  25. P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
    [CrossRef]
  26. I. Yamaguchi and T. Fujita, "Laser speckle rotary encoder," Appl. Opt. 28, 4401-4406 (1989).
    [CrossRef] [PubMed]
  27. M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).
  28. I. Yamaguchi, "Automatic measurement of in-plane translation by speckle correlation using a linear image sensor," J. Phys. E 19, 944-949 (1986).
    [CrossRef]
  29. P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).
  30. I. Yamaguchi, T. Takemori, and K. Kobayashi, "Stabilized and accelerated speckle strain gauge," Opt. Eng. 32, 618-625 (1993).
    [CrossRef]
  31. P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
    [CrossRef]
  32. P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
    [CrossRef]
  33. I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
    [CrossRef]
  34. P. Šmíd, P. Horváth, and M. Hrabovský, "Speckle correlation method used to detect an object's surface slope," Appl. Opt. 45, 6932-6939 (2006).
    [CrossRef] [PubMed]
  35. M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
    [CrossRef]
  36. I. Yamaguchi and S.-I. Komatsu, "Theory and applications of dynamic laser speckles due to in-plane object motion," Opt. Acta 24, 705-724 (1977).
    [CrossRef]
  37. S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
    [CrossRef]
  38. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  39. J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9-75.
  40. A. E. Ennos, "Speckle interferometry," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 203-253.
  41. S. G. Rabinovich, Measurement Errors and Uncertainties (Springer-Verlag, 1995).

2006 (3)

2004 (3)

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).

2003 (2)

E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
[CrossRef]

2002 (1)

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

2000 (4)

M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

M. Kawahashi and H. Hirahara, "Velocity and density field measurements by digital speckle method," Opt. Laser. Technol. 32, 575-582 (2000).
[CrossRef]

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

1999 (3)

S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
[CrossRef]

C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
[CrossRef]

S. K. Özdemir, S. Ito, S. Shinohara, H. Yoshida, and M. Sumi, "Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode," Appl. Opt. 38, 6859-6865 (1999).
[CrossRef]

1997 (3)

O. Toedter and A. W. Koch, "A simple laser-based distance measuring device," Measurement 20, 121-128 (1997).
[CrossRef]

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

M. S. Chun and J. G. Lenard, "Hot rolling of an aluminium alloy using oil/water emulsions," J. Mater. Proc. Technol. 72, 283-292 (1997).
[CrossRef]

1996 (4)

B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
[CrossRef]

W. Mitsuhashi, "A computational model of echo location," J. Acoust. Soc. Am. 100, 2644 (1996).
[CrossRef]

G. R. Bashford and O. T. von Ramm, "Ultrasound three-dimensional velocity measurements by feature tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 376-384 (1996).
[CrossRef]

D. S. Vernon, "Phase-based measurement of object velocity in image sequences using the Hough transform," Opt. Eng. 35, 2620-2626 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

I. Yamaguchi, T. Takemori, and K. Kobayashi, "Stabilized and accelerated speckle strain gauge," Opt. Eng. 32, 618-625 (1993).
[CrossRef]

1989 (1)

1986 (1)

I. Yamaguchi, "Automatic measurement of in-plane translation by speckle correlation using a linear image sensor," J. Phys. E 19, 944-949 (1986).
[CrossRef]

1981 (2)

I. Yamaguchi, "Speckle displacement and decorrelation in the diffraction and image fields for small object deformation," Opt. Acta 28, 1359-1376 (1981).
[CrossRef]

G. Smeets and A. George, "Michelson spectrometer for instantaneous Doppler velocity measurements," J. Phys. E 14, 838-845 (1981).
[CrossRef]

1979 (1)

1978 (1)

K. Iwata and R. Nagata, "An analysis on fringe formation in holographic interferometry," J. Mod. Opt. 25, 19-39 (1978).

1977 (1)

I. Yamaguchi and S.-I. Komatsu, "Theory and applications of dynamic laser speckles due to in-plane object motion," Opt. Acta 24, 705-724 (1977).
[CrossRef]

1976 (1)

S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
[CrossRef]

Baca, Z.

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).

Bashford, G. R.

G. R. Bashford and O. T. von Ramm, "Ultrasound three-dimensional velocity measurements by feature tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 376-384 (1996).
[CrossRef]

Becker, S.

S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
[CrossRef]

Bruinsma, A. J.

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

Carletti, C.

C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
[CrossRef]

Cheng, L. K.

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

Chun, M. S.

M. S. Chun and J. G. Lenard, "Hot rolling of an aluminium alloy using oil/water emulsions," J. Mater. Proc. Technol. 72, 283-292 (1997).
[CrossRef]

Colquhoun, H. W.

B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
[CrossRef]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

Durst, F.

S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
[CrossRef]

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Anemometry (Academic, 1976).

Ennos, A. E.

A. E. Ennos, "Speckle interferometry," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 203-253.

Ewan, B. C. R.

Fujita, T.

Fukishima, S.

George, A.

G. Smeets and A. George, "Michelson spectrometer for instantaneous Doppler velocity measurements," J. Phys. E 14, 838-845 (1981).
[CrossRef]

Goodman, J. W.

J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9-75.

Han, D.

Henao, R.

C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
[CrossRef]

Herzog, P.

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

Hirahara, H.

M. Kawahashi and H. Hirahara, "Velocity and density field measurements by digital speckle method," Opt. Laser. Technol. 32, 575-582 (2000).
[CrossRef]

Horváth, P.

P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
[CrossRef]

P. Šmíd, P. Horváth, and M. Hrabovský, "Speckle correlation method used to detect an object's surface slope," Appl. Opt. 45, 6932-6939 (2006).
[CrossRef] [PubMed]

P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).

P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
[CrossRef]

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).

Hrabovský, M.

P. Šmíd, P. Horváth, and M. Hrabovský, "Speckle correlation method used to detect an object's surface slope," Appl. Opt. 45, 6932-6939 (2006).
[CrossRef] [PubMed]

P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).

P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
[CrossRef]

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).

Hum, B.

B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
[CrossRef]

Ito, S.

Iwata, K.

K. Iwata and R. Nagata, "An analysis on fringe formation in holographic interferometry," J. Mod. Opt. 25, 19-39 (1978).

Kawahashi, M.

M. Kawahashi and H. Hirahara, "Velocity and density field measurements by digital speckle method," Opt. Laser. Technol. 32, 575-582 (2000).
[CrossRef]

Kobayashi, K.

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
[CrossRef]

I. Yamaguchi, T. Takemori, and K. Kobayashi, "Stabilized and accelerated speckle strain gauge," Opt. Eng. 32, 618-625 (1993).
[CrossRef]

Kobayashi, Y.

Koch, A. W.

O. Toedter and A. W. Koch, "A simple laser-based distance measuring device," Measurement 20, 121-128 (1997).
[CrossRef]

Komatsu, S.

S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
[CrossRef]

Komatsu, S.-I.

I. Yamaguchi and S.-I. Komatsu, "Theory and applications of dynamic laser speckles due to in-plane object motion," Opt. Acta 24, 705-724 (1977).
[CrossRef]

Lenard, J. G.

M. S. Chun and J. G. Lenard, "Hot rolling of an aluminium alloy using oil/water emulsions," J. Mater. Proc. Technol. 72, 283-292 (1997).
[CrossRef]

B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
[CrossRef]

Li, E. B.

E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
[CrossRef]

Lienhart, H.

S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
[CrossRef]

Melling, A.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Anemometry (Academic, 1976).

Mitsuhashi, W.

W. Mitsuhashi, "A computational model of echo location," J. Acoust. Soc. Am. 100, 2644 (1996).
[CrossRef]

W. Mitsuhashi, "Echo location systems," in Intelligent Sensors, H. Yamasaki, ed. (Elsevier, 1996), p. 191.

Mukohzaka, N.

Nagata, R.

K. Iwata and R. Nagata, "An analysis on fringe formation in holographic interferometry," J. Mod. Opt. 25, 19-39 (1978).

Neumannová, P.

P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
[CrossRef]

Özdemir, S. K.

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

S. K. Özdemir, S. Ito, S. Shinohara, H. Yoshida, and M. Sumi, "Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode," Appl. Opt. 38, 6859-6865 (1999).
[CrossRef]

Prinse, W. C.

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

Rabinovich, S. G.

S. G. Rabinovich, Measurement Errors and Uncertainties (Springer-Verlag, 1995).

Saito, H.

S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Shinohara, S.

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

S. K. Özdemir, S. Ito, S. Shinohara, H. Yoshida, and M. Sumi, "Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode," Appl. Opt. 38, 6859-6865 (1999).
[CrossRef]

Sjödahl, M.

Smeets, G.

G. Smeets and A. George, "Michelson spectrometer for instantaneous Doppler velocity measurements," J. Phys. E 14, 838-845 (1981).
[CrossRef]

Šmíd, P.

P. Šmíd, P. Horváth, and M. Hrabovský, "Speckle correlation method used to detect an object's surface slope," Appl. Opt. 45, 6932-6939 (2006).
[CrossRef] [PubMed]

P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).

P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
[CrossRef]

P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
[CrossRef]

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

Smorenburg, C.

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

Sumi, M.

Takamiya, S.

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

Takemori, T.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Tieu, A. K.

E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
[CrossRef]

Toedter, O.

O. Toedter and A. W. Koch, "A simple laser-based distance measuring device," Measurement 20, 121-128 (1997).
[CrossRef]

Torroba, R.

C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
[CrossRef]

Tournois, G.

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

Valeau, V.

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

Valiere, J. C.

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

Vernon, D. S.

D. S. Vernon, "Phase-based measurement of object velocity in image sequences using the Hough transform," Opt. Eng. 35, 2620-2626 (1996).
[CrossRef]

von Ramm, O. T.

G. R. Bashford and O. T. von Ramm, "Ultrasound three-dimensional velocity measurements by feature tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 376-384 (1996).
[CrossRef]

Wang, K. F.

E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
[CrossRef]

Wang, M.

Whitelaw, J. H.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Anemometry (Academic, 1976).

Yamaguchi, I.

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
[CrossRef]

I. Yamaguchi, T. Takemori, and K. Kobayashi, "Stabilized and accelerated speckle strain gauge," Opt. Eng. 32, 618-625 (1993).
[CrossRef]

I. Yamaguchi and T. Fujita, "Laser speckle rotary encoder," Appl. Opt. 28, 4401-4406 (1989).
[CrossRef] [PubMed]

I. Yamaguchi, "Automatic measurement of in-plane translation by speckle correlation using a linear image sensor," J. Phys. E 19, 944-949 (1986).
[CrossRef]

I. Yamaguchi, "Speckle displacement and decorrelation in the diffraction and image fields for small object deformation," Opt. Acta 28, 1359-1376 (1981).
[CrossRef]

I. Yamaguchi and S.-I. Komatsu, "Theory and applications of dynamic laser speckles due to in-plane object motion," Opt. Acta 24, 705-724 (1977).
[CrossRef]

S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
[CrossRef]

Yaroslavsky, L.

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
[CrossRef]

Yoshida, H.

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

S. K. Özdemir, S. Ito, S. Shinohara, H. Yoshida, and M. Sumi, "Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode," Appl. Opt. 38, 6859-6865 (1999).
[CrossRef]

Yoshida, N.

Zhou, J.

AIAA J. (1)

S. Becker, F. Durst, and H. Lienhart, "Laser Doppler anemometer for in-flight velocity measurements on airplane wings: aerodynamic measurement technology," AIAA J. 37, 680-687 (1999).
[CrossRef]

Appl. Opt. (6)

Exp. Mech. (1)

P. Horváth, P. Šmíd, M. Hrabovský, and P. Neumannová, "Measurement of deformation by means of speckle fields," Exp. Mech. 46, 713-723 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

G. R. Bashford and O. T. von Ramm, "Ultrasound three-dimensional velocity measurements by feature tracking," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 376-384 (1996).
[CrossRef]

J. Acoust. Soc. Am. (1)

W. Mitsuhashi, "A computational model of echo location," J. Acoust. Soc. Am. 100, 2644 (1996).
[CrossRef]

J. Mater. Proc. Technol. (2)

B. Hum, H. W. Colquhoun, and J. G. Lenard, "Measurements of friction during hot rolling of aluminum strips," J. Mater. Proc. Technol. 60, 331-338 (1996).
[CrossRef]

M. S. Chun and J. G. Lenard, "Hot rolling of an aluminium alloy using oil/water emulsions," J. Mater. Proc. Technol. 72, 283-292 (1997).
[CrossRef]

J. Mod. Opt. (2)

K. Iwata and R. Nagata, "An analysis on fringe formation in holographic interferometry," J. Mod. Opt. 25, 19-39 (1978).

P. Horváth, M. Hrabovský, and P. Šmíd, "Full theory of speckle displacement and decorrelation in the image field by wave and geometrical description and its application in mechanics," J. Mod. Opt. 51, 725-742 (2004).
[CrossRef]

J. Phys. E (2)

I. Yamaguchi, "Automatic measurement of in-plane translation by speckle correlation using a linear image sensor," J. Phys. E 19, 944-949 (1986).
[CrossRef]

G. Smeets and A. George, "Michelson spectrometer for instantaneous Doppler velocity measurements," J. Phys. E 14, 838-845 (1981).
[CrossRef]

J. Sound Vibrat. (1)

J. C. Valiere, P. Herzog, V. Valeau, and G. Tournois, "Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements," J. Sound Vibrat. 229, 607-626 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

S. K. Özdemir, S. Takamiya, S. Shinohara, and H. Yoshida, "A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements," Meas. Sci. Technol. 11, 1447-1455 (2000).
[CrossRef]

Measurement (1)

O. Toedter and A. W. Koch, "A simple laser-based distance measuring device," Measurement 20, 121-128 (1997).
[CrossRef]

Opt. Acta (2)

I. Yamaguchi, "Speckle displacement and decorrelation in the diffraction and image fields for small object deformation," Opt. Acta 28, 1359-1376 (1981).
[CrossRef]

I. Yamaguchi and S.-I. Komatsu, "Theory and applications of dynamic laser speckles due to in-plane object motion," Opt. Acta 24, 705-724 (1977).
[CrossRef]

Opt. Appl. (1)

P. Horváth, M. Hrabovský, and P. Šmíd, "Application of speckle decorrelation method for small translation measurements," Opt. Appl. 34, 203-218 (2004).

Opt. Commun. (3)

S. Komatsu, I. Yamaguchi, and H. Saito, "Velocity measurement using structural change of speckle," Opt. Commun. 18, 314-316 (1976).
[CrossRef]

C. Carletti, R. Torroba, and R. Henao, "Measuring velocity of speckle fields with digital speckle pattern interferometry," Opt. Commun. 160, 195-200 (1999).
[CrossRef]

E. B. Li, A. K. Tieu, and K. F. Wang, "Dynamic laser speckle method for determining the relative velocity between two objects," Opt. Commun. 219, 1-8 (2003).
[CrossRef]

Opt. Eng. (3)

D. S. Vernon, "Phase-based measurement of object velocity in image sequences using the Hough transform," Opt. Eng. 35, 2620-2626 (1996).
[CrossRef]

I. Yamaguchi, K. Kobayashi, and L. Yaroslavsky, "Measurement of surface roughness by speckle correlation," Opt. Eng. 43, 2753-2761 (2004).
[CrossRef]

I. Yamaguchi, T. Takemori, and K. Kobayashi, "Stabilized and accelerated speckle strain gauge," Opt. Eng. 32, 618-625 (1993).
[CrossRef]

Opt. Express (1)

Opt. Laser. Technol. (1)

M. Kawahashi and H. Hirahara, "Velocity and density field measurements by digital speckle method," Opt. Laser. Technol. 32, 575-582 (2000).
[CrossRef]

Optik (2)

M. Hrabovský, Z. Baca, and P. Horváth, "Measurement of an object rotation using the theory of speckle pattern decorrelation," Optik 111, 359-366 (2000).

M. Hrabovský, P. Šmíd, P. Horváth, and Z. Baca, "Measurement of object vibrations using the theory of speckle pattern decorrelation," Optik 113, 117-120 (2002).
[CrossRef]

Proc. SPIE (1)

P. Horváth, M. Hrabovský, and P. Šmíd, "Analysis of stress measurement by means of speckle decorrelation," in Surface Scattering and Diffraction III, Zu-Han Gu and A. A. Maradudin, eds., Proc. SPIE 5189, 174-181 (2003).
[CrossRef]

Other (8)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 9-75.

A. E. Ennos, "Speckle interferometry," in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984), pp. 203-253.

S. G. Rabinovich, Measurement Errors and Uncertainties (Springer-Verlag, 1995).

L. K. Cheng, A. J. Bruinsma, W. C. Prinse, and C. Smorenburg, "Fabry-Perot interferometer system for high-speed velocity measurement," in 22nd International Congress onHigh-Speed Photography and Photonics, D. L. Paisley, ed., Proc. SPIE 2869, 1050-1057 (1997).

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser Anemometry (Academic, 1976).

W. Mitsuhashi, "Echo location systems," in Intelligent Sensors, H. Yamasaki, ed. (Elsevier, 1996), p. 191.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coordinate system for observation of a speckle pattern where the axes f x , g x , and f z form a plane.

Fig. 2
Fig. 2

Scheme of the optical setup for measurement of in-plane velocity of an object in motion.

Fig. 3
Fig. 3

Result of measurement of the in-plane velocity profile of an object's motion through the presented speckle correlation method.

Tables (2)

Tables Icon

Table 1 Simulation Analysis of Speckle Pattern Displacements A X a

Tables Icon

Table 2 Results of Measurement of Object In-Plane Velocity by Means of Speckle Correlation Method a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( p ) = 1 i λ + U ( f ) e i [ k R ( p , f ) + φ ( f ) ] d 2 f ,
U ( g ) = 1 i λ L p + U ( p ) t ( p ) e i k R ( g , p ) d 2 p ,
R ( g , g + Δ g ) = I ( g ) I ( g + Δ g ) I ( g ) I ( g + Δ g ) ,
A X f L p f = a x [ L c ( L p f ) f L p L s ( L p f ) 1 cos θ o + cos θ o ] ,
v x = a x Δ t .

Metrics