Abstract

A broadband-corrected optical telescope has been constructed from a photon sieve with five million holes. Through careful optimization of hole size, this “antihole” sieve has holes centered on the dark underlying Fresnel zones. The diffraction-limited performance of a 1 m focal-length, f/10 element is demonstrated with a view toward constructing large lightweight telescopes for space applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
    [CrossRef] [PubMed]
  2. Q. Cao and J. Jahns, "Focusing analysis of the pinhole photon sieve:individual far-field model," J. Opt. Soc. Am. A 19, 2387-2393 (2002).
    [CrossRef]
  3. Q. Cao and J. Jahns, "Nonparaxial model for the focusing of high-numerical aperture photon sieves," J. Opt. Soc. Am. A 20, 1005-1012 (2003).
    [CrossRef]
  4. Q. Cao and J. Jahns, "Modified Fresnel zone plates that produce sharp Gaussian focal spots," J. Opt. Soc. Am. A 20, 1576-1581 (2003).
    [CrossRef]
  5. Q. Cao and J. Jahns, "Comprehensive focusing analysis of various Fresnel zone plates," J. Opt. Soc. Am. A 21, 561-571 (2004).
    [CrossRef]
  6. G. Andersen, "Large optical photon sieve," Opt. Lett. 30, 2976-2978 (2005).
    [CrossRef] [PubMed]
  7. G. S. Waldman, "Variations on the Fresnel zone plate," J. Opt. Soc. Am. 56, 215-218 (1966).
    [CrossRef]
  8. H. H. M. Chau, "Zone plates produced optically," Appl. Opt. 8, 1209-1211 (1969).
    [CrossRef] [PubMed]
  9. V. E. Levashov and A. V. Vinogradov, "Analytical theory of zone plate efficiency," Phys. Rev. E 49, 5797-5803 (1994).
    [CrossRef]
  10. C. M. Choy and L. M. Cheng, "High-efficiency cosine-approximated binary Gabor zone plate," Appl. Opt. 33, 794-799 (1994).
    [CrossRef] [PubMed]

2005

2004

2003

2002

2001

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

1994

V. E. Levashov and A. V. Vinogradov, "Analytical theory of zone plate efficiency," Phys. Rev. E 49, 5797-5803 (1994).
[CrossRef]

C. M. Choy and L. M. Cheng, "High-efficiency cosine-approximated binary Gabor zone plate," Appl. Opt. 33, 794-799 (1994).
[CrossRef] [PubMed]

1969

1966

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Andersen, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Cao, Q.

Chau, H. H. M.

Cheng, L. M.

Choy, C. M.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Jahns, J.

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Levashov, V. E.

V. E. Levashov and A. V. Vinogradov, "Analytical theory of zone plate efficiency," Phys. Rev. E 49, 5797-5803 (1994).
[CrossRef]

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, "Sharper images by focusing soft X-rays with photon sieves," Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Vinogradov, A. V.

V. E. Levashov and A. V. Vinogradov, "Analytical theory of zone plate efficiency," Phys. Rev. E 49, 5797-5803 (1994).
[CrossRef]

Waldman, G. S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Central 20   mm diameter of the antihole photon sieve.

Fig. 2
Fig. 2

(a) Interferogram of the photon sieve. (b) Image of a resolution test target produced by the photon sieve.

Fig. 3
Fig. 3

Optical layout for the broadband photon sieve telescope. The paths of two different wavelengths are shown as solid and dashed.

Fig. 4
Fig. 4

(a) Focal spots of the broadband antihole photon sieve telescope recorded at 514.5, 532.1, and 543.4   nm , respectively. (b), (c) Interferograms recorded at 514.5 and 532.1   nm , respectively.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

f / 10
> 20   m
r n :
r n 2 = 2 n f λ + n 2 λ 2 .
π λ f
w = λ f 2 r n .
r n
F d w J 1 ( π d 2 w ) ,
J 1
F > 0
F < 0
d / w
532.1   nm
( n = 7.5 2363.5 )
331 μ m
20   mm
n = 7.5 99.5
125   mm
2.4   mm
( λ = 532.1   nm )
f = 715   mm
D = 150   mm
12.8 μ m
13 μ m
0.02 λ
0.12 λ
532.1   nm
Δ f f = Δ λ λ .
Δ λ 2 λ 2 f D 2
0.06   nm
40   mm
( f = 158.5   mm )
400   mm
200   mm
f = 734   mm
807.7   mm
λ / 14
40   nm
( λ = 522 562   nm )
543.4   nm
532.1   nm
40   nm
20   mm
543.4   nm
532.1   nm

Metrics