Abstract

An external-cavity laser with a wavelength of 405nm and an output of 80mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3mm; and the third is a six-mode state with a coherent length of 0.3mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532nm laser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393-400 (1963).
    [CrossRef]
  2. H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
    [CrossRef] [PubMed]
  3. E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).
  4. S. Yasuda, K. Kawano, J. Minabe, Y. Ogasawara, K. Hayashi, K. Haga, H. Yoshizawa, and M. Furuki, "Coaxial holographic data storage without recording the dc components," Opt. Lett. 31, 2607-2609 (2006).
    [CrossRef] [PubMed]
  5. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
    [CrossRef]
  6. M. G. Littman and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt. 17, 2224-2227 (1978).
    [CrossRef] [PubMed]
  7. L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  8. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, and F. Schael, "Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy," Appl. Opt. 42, 2110-2118 (2003).
    [CrossRef] [PubMed]
  9. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
    [CrossRef]
  10. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).
  11. H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  12. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), Chap. X.
  13. G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.
  14. T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.
  15. K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
    [CrossRef]
  16. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.
  17. K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

2006

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

S. Yasuda, K. Kawano, J. Minabe, Y. Ogasawara, K. Hayashi, K. Haga, H. Yoshizawa, and M. Furuki, "Coaxial holographic data storage without recording the dc components," Opt. Lett. 31, 2607-2609 (2006).
[CrossRef] [PubMed]

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

2005

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
[CrossRef] [PubMed]

2004

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

2003

2000

G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.

1996

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

1995

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

1980

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

1978

1969

H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

1963

Akao, S.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Anderson, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

Askham, F.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Beal, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), Chap. X.

Cole, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Curtis, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

Dhar, L.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Esslinger, T.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

Fukumoto, A.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Furuki, M.

Haensch, T. W.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Haga, K.

Hayashi, K.

Hemmerich, A.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Hildebrandt, L.

Hill, A.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Hirooka, K.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Horimai, H.

Hwang, E.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Ihas, B.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Kang, B.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Kasegawa, R.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

Kawano, K.

Kim, K.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Kim, N.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Knispel, R.

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Kobayashi, S.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

Koening, W.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Li, J.

Littman, M. G.

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Metcalf, H. J.

Michaels, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Miller, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Minabe, J.

Mok, F.

G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Ogasawara, Y.

Okada, H.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Park, J.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Psaltis, D.

G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.

Quirin, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Ricci, L.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Sacher, J. R.

Sako, K.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

Schael, F.

Schnoes, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Seko, S.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Setthachayanon, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

Stry, S.

Sugiki, M.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Takasaki, K.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

Tan, X.

Tanaka, T.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

Toishi, M.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

Trentler, T.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

van Heerden, P. J.

Vuletic, V.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wang, P.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Watanabe, K.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

Weidemueller, M.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wilson, W.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), Chap. X.

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

Yasuda, S.

Yoon, P.

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

Yoshizawa, H.

Zhou, G.

G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.

Zimmermann, C.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980).
[CrossRef]

Jpn. J. Appl. Phys.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[CrossRef]

K. Takasaki, S. Kobayashi, M. Sugiki, and K. Watanabe, "Line segment hologram writer using single-mode blue laser and one-dimensional spatial light modulator," Jpn. J. Appl. Phys. 44, 6090-6091 (2005).
[CrossRef]

Opt. Commun.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Opt. Lett.

Other

E. Hwang, P. Yoon, N. Kim, B. Kang, K. Kim, J. Park, and J. Park, "Real-time video demonstration of holographic disk data storage system," in Optical Data Storage, R. Katayama and T. Schlesinger, eds., Proc. SPIE 6282, 628205 (2006).

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, "Photopolymer media for holographic storage at ~405 nm," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 283-288 (2004).

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High speed holographic data storage at 100 Gbit/in.2," in Technical Digest of International Symposium on Optical Memory and Optical Data Storage (2005), paper ThE2.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975), Chap. X.

G. Zhou, F. Mok, and D. Psaltis, "Beam deflectors and spatial light modulators for holographic storage application," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 241-257, Fig. 2.

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, "Tunable blue laser for holographic data storage," in Proceedings of Optical Data Storage, Optical Data Storage Topical Meeting (2006), pp. 215-217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the laser. Grating angle is adjusted with a screw and a plate spring.

Fig. 2
Fig. 2

Front view of the laser. Heat sink, Peltier element, and base plate are aligned. The laser size is 53 mm × 55 mm × 35 mm ( 53 mm × 55 mm × 60 mm including heat sink).

Fig. 3
Fig. 3

LD current versus output power. The laser has a lower threshold current and lower slope efficiency than the LD.

Fig. 4
Fig. 4

Heterodyne method. When the wavelength difference of two lasers is sufficiently small, the electrical spectrum analyzer detects the beat of the two lights.

Fig. 5
Fig. 5

Beat signal spectrum by heterodyne method. The full width at half-maximum is 30 MHz .

Fig. 6
Fig. 6

(a) LD current versus wavelength, (b) perfect single mode, (c) external-cavity mode hop, (d) chip-mode hop. When the LD current is changed monotonically, the laser repeats the mode states in (b) and (c) in one cycle and that in (d) in a longer cycle.

Fig. 7
Fig. 7

Optics for measuring diffraction efficiency. Beams 1 and 2 are irradiated to the medium during recording, and only beam 1 is irradiated to the medium during reading.

Fig. 8
Fig. 8

Reading angle versus diffraction efficiency. Medium thickness is 0.273 mm .

Fig. 9
Fig. 9

Recording and reading configuration for calculation. (a) Recording. The wavelength of two beams is λ, the incident angles are + A and A . (b) Reading. The wavelength of read beam is λ + Δ λ and the incident angle is + A . In this case, the diffracted angle becomes A + Δ A .

Fig. 10
Fig. 10

Michelson interferometer. The beam emitted by the laser is divided into two rays by the half-mirror. One ray is reflected by mirror 1 and irradiates the screen, and the other ray is reflected by mirror 2 and irradiates the screen. Fringe on the screen appears when the coherent length is longer than the difference of the path lengths.

Fig. 11
Fig. 11

Three modes (external-cavity mode hop). Upper graph shows the difference of the optical path lengths versus coherency. Lower graph shows wavelength versus intensity in the optical spectrum analyzer.

Fig. 12
Fig. 12

Two modes (chip-mode hop).

Fig. 13
Fig. 13

Typical optical configuration on angle multiplexing.

Fig. 14
Fig. 14

Reference beam, which maintains cτ r . Angle-scan mirror, two lenses, and medium form four-f configuration.

Fig. 15
Fig. 15

Typical optical configuration on coaxial multiplexing. Parts for reading are not drawn for simplicity. Both signal and reference beams pass through the same lens; therefore, cτ r is nearly zero.

Tables (2)

Tables Icon

Table 1 Comparison of c τ in Two-Mode (Chip-Mode Hop) State

Tables Icon

Table 2 Calculated c τ 0.9 and Recording-Layer Thickness 2 x

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

d ( sin α + sin β ) = m λ ,
2 d sin α = λ .
L C = q λ 2 n c ,
L E = r λ 2 ,
η = P 2 / ( P 1 + P 2 ) ,
sin A sin α = n ,
2 d sin α = λ / n ,
d [ sin α + sin ( α + Δ α ) ] = λ + Δ λ n ,
Δ α = 2 ( tan α ) Δ λ / λ .
η = sin 2 ( ν 2 + ξ 2 ) 1 / 2 1 + ξ 2 / ν 2 ,
ξ = Δ λ K 2 l 8 π n 0 cos θ B ,
ν = π n 1 l λ cos θ B ,
η 405 η 405.04 η 405 10 5 .
E 1 ( t ) = k = 1 3 a k exp [ i ( 2 π c t / λ k + δ k ) ] ,
E ( t ) = E 1 ( t ) + E 1 ( t τ ) ,
I ( c τ ) = 1 2 E ( t ) * E ( t ) ,
= k = 1 3 a k 2 [ 1 + cos ( 2 π c τ λ k ) ] ,
V = I ( c τ ) max I ( c τ ) min I ( c τ ) max + I ( c τ ) min .
V = | k = 1 3 a k 2 cos ( 2 π c τ λ k ) | max k = 1 3 a k 2 ,
V = 1 3 | 1 + 2 cos ( 2 π c τ Δ λ 5 λ 2 2 ) | .
V = [ ( a 1 2 a 2 2 ) 2 + 4 a 1 2 a 2 2 cos 2 ( π c τ Δ λ 40 λ a v e 2 ) ] 1 / 2 a 1 2 + a 2 2 ,
V = | cos ( π c τ Δ λ 40 λ a v e 2 ) | .
V = 1 3 | [ 1 + 2 cos ( 2 π c τ Δ λ 5 λ a v e 2 ) ] cos ( 2 π c τ Δ λ 40 λ a v e 2 ) | ,
y = ( tan φ 1 ) x ,
τ 1 = 1 c ( x 2 + y 2 ) 1 / 2 = 1 c x cos φ 1 ,
y = ( cot φ 2 ) x + y 0 ,
τ 2 = [ ( cos φ 2 ) x + ( sin φ 2 ) y ] / c .
τ 2 = ( tan φ 1 sin φ 2 + cos φ 2 ) x / c .
c τ r = ( 1 cos φ 1 tan φ 1 sin φ 2 cos φ 2 ) n x
= 0.9 n x .

Metrics