Abstract

A Michelson interferometer setup was used to determine refractive index and thickness of a fused-quartz sample with no knowledge of either parameter. At small angles, <10°, the interferometer equation follows a fourth-order polynomial in the sample refractive index alone, effectively decoupling the sample thickness from the equation. The incident angle of the He-Ne laser beam versus fringe shift was fitted to the polynomial, and its coefficients obtained. These were used to determine refractive index to within 6×10−4 of the known value with an accuracy of ±1.3%. Sample thickness was determined to an accuracy of ±2.5%. Reproducibility of the rotating table was determined to be ±2×10−3 degrees.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Ibrahim and N. M. Bashara, "Parameter-correlation and computational consideration in multiple-angle ellipsometry," J. Opt. Soc. Am. 61, 1622-1629 (1971).
  2. T. Kihara and K. Yokomori, "Simultaneous measurement of refractive index and thickness of thin film by polarized reflectances," Appl. Opt. 29, 5069-5073 (1990).
  3. G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).
  4. T. Fukano and I. Yamaguchi, "Separation of the measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope," Appl. Opt. 38, 4065-4073 (1999).
  5. G. D. Gillen and S. Guha, "Use of Michelson and Fabry-Perot interferometry for independent determination of the refractive index and physical thickness of wafers," Appl. Opt. 44, 344-347 (2005).
  6. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 2001).
  7. "TIE-29: Refractive Index and Dispersion," in Technical Information--Optics for Devices (Schott North America, 2005), p. 5.
  8. Optical Glass Catalogue (Schott North America, 2006).
  9. N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.
  10. IBM Holographic Storage Team, "Optical data storage enters a new dimension," Phys. World 2000, 37-42.
  11. M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

2005 (1)

2004 (1)

M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

2003 (1)

G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).

1999 (1)

1990 (1)

1971 (1)

Bashara, N. M.

Coppola, G.

G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).

De Nicola, S.

G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).

Ferraro, P.

G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).

Fukano, T.

Gillen, G. D.

Govil, N. K.

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Guha, S.

Ibrahim, M. M.

Ince, A. T.

M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

Ince, R.

M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, "Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer," Appl. Opt. 41, 3882-3887 (2003).

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 2001).

Kihara, T.

Mhaskar, H. N.

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Mohapatra, R. N.

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Nashed, Z.

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Szabados, J.

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Team, IBM Holographic Storage

IBM Holographic Storage Team, "Optical data storage enters a new dimension," Phys. World 2000, 37-42.

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 2001).

Yamaguchi, I.

Yokomori, K.

Yükselici, M. H.

M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

Opt. Lasers Eng. (1)

M. H. Yükselici, R. Ince, and A. T. Ince, "Data storage characteristics of iron doped LiNbO3 under a 90° geometry two-beam coupling configuration," Opt. Lasers Eng. 42, 277-287 (2004).

Phys. World (1)

IBM Holographic Storage Team, "Optical data storage enters a new dimension," Phys. World 2000, 37-42.

Other (4)

F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 2001).

"TIE-29: Refractive Index and Dispersion," in Technical Information--Optics for Devices (Schott North America, 2005), p. 5.

Optical Glass Catalogue (Schott North America, 2006).

N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, Frontiers in Interpolation and Approximation, 1st ed. (Chapman and Hall/CRC, 2006), pp. 187-188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics