Abstract

The technique of recording fiber Bragg gratings (FBGs) with single exposure pulses during the fiber drawing process allows production of such gratings in complex array structures, with high mechanical strength of the fiber and in a simple and cost-efficient way. This is of special interest for the growing field of fiber sensor applications with FBGs. A general advantage of fiber sensor systems is their ability to be used also at elevated temperatures compared with conventional electric or electronic sensors. For this purpose, the fiber itself as well as the grating structure and the fiber coating should be stable under such elevated temperature conditions. We have investigated different coating materials and possibilities of making temperature-stable FBGs of types I and II in the range of 100°C1000  °C with good reflection efficiency by single-pulse exposure during the fiber drawing process.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  2. O. H. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef] [PubMed]
  3. C. G. Askins, T.-E., Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors prepared by a single excimer pulse," Opt. Lett. 17, 833-835 (1992).
    [CrossRef] [PubMed]
  4. J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
    [CrossRef] [PubMed]
  5. L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
    [CrossRef] [PubMed]
  6. C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
    [CrossRef] [PubMed]
  7. V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
    [CrossRef] [PubMed]
  8. P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
    [PubMed]
  9. C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, "Stepped wavelength optical fiber Bragg grating arrays fabricated in line on a draw tower," Opt. Lett. 19, 147-149 (1994).
    [CrossRef] [PubMed]
  10. C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
    [PubMed]
  11. C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
    [CrossRef] [PubMed]
  12. Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
    [CrossRef] [PubMed]
  13. L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
    [CrossRef] [PubMed]
  14. M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
    [PubMed]
  15. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
    [CrossRef] [PubMed]
  16. H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
    [CrossRef] [PubMed]
  17. K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
    [CrossRef] [PubMed]
  18. K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
    [CrossRef] [PubMed]
  19. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef] [PubMed]
  20. S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
    [PubMed]
  21. V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
    [PubMed]
  22. R. G. C. Arridge and D. Heywood, "The freeze-coating of filaments," Br. J. Appl. Phys. 18, 447-457 (1967).
    [CrossRef] [PubMed]

2005 (1)

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

2004 (3)

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber: decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
[CrossRef] [PubMed]

M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
[PubMed]

1999 (1)

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

1998 (1)

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

1997 (2)

C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
[CrossRef] [PubMed]

O. H. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef] [PubMed]

1994 (2)

1993 (4)

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
[CrossRef] [PubMed]

1992 (4)

H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
[CrossRef] [PubMed]

K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
[CrossRef] [PubMed]

C. G. Askins, T.-E., Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors prepared by a single excimer pulse," Opt. Lett. 17, 833-835 (1992).
[CrossRef] [PubMed]

C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
[PubMed]

1989 (1)

1982 (1)

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

1967 (1)

R. G. C. Arridge and D. Heywood, "The freeze-coating of filaments," Br. J. Appl. Phys. 18, 447-457 (1967).
[CrossRef] [PubMed]

Archambault, J. L.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
[CrossRef] [PubMed]

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef] [PubMed]

Arridge, R. G. C.

R. G. C. Arridge and D. Heywood, "The freeze-coating of filaments," Br. J. Appl. Phys. 18, 447-457 (1967).
[CrossRef] [PubMed]

Askins, C. G.

C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
[CrossRef] [PubMed]

C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, "Stepped wavelength optical fiber Bragg grating arrays fabricated in line on a draw tower," Opt. Lett. 19, 147-149 (1994).
[CrossRef] [PubMed]

C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
[PubMed]

C. G. Askins, T.-E., Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors prepared by a single excimer pulse," Opt. Lett. 17, 833-835 (1992).
[CrossRef] [PubMed]

Bashkansky, M.

C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
[PubMed]

C. G. Askins, T.-E., Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors prepared by a single excimer pulse," Opt. Lett. 17, 833-835 (1992).
[CrossRef] [PubMed]

Betz, D.

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

Bogatyrjov, V. A.

V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
[PubMed]

Bubnov, M. M.

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

Chida, K.

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

Chojetzki, C.

M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
[PubMed]

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

Dianov, E. M.

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
[PubMed]

Dong, L.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef] [PubMed]

Friebele, E. J.

C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
[CrossRef] [PubMed]

C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, "Stepped wavelength optical fiber Bragg grating arrays fabricated in line on a draw tower," Opt. Lett. 19, 147-149 (1994).
[CrossRef] [PubMed]

C. G. Askins, T.-E., Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors prepared by a single excimer pulse," Opt. Lett. 17, 833-835 (1992).
[CrossRef] [PubMed]

C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
[PubMed]

Glaubitt, W.

K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
[CrossRef] [PubMed]

H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
[CrossRef] [PubMed]

Glenn, W. H.

Grattan, K. T. V.

Hagemann, V.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

He, J.

Heywood, D.

R. G. C. Arridge and D. Heywood, "The freeze-coating of filaments," Br. J. Appl. Phys. 18, 447-457 (1967).
[CrossRef] [PubMed]

Hill, O. H.

O. H. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef] [PubMed]

Kimura, T.

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

Klaiberg, T.

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

Krumbholz, O.

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef] [PubMed]

Mauron, P.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

Meltz, G.

O. H. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef] [PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
[CrossRef] [PubMed]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef] [PubMed]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef] [PubMed]

Morey, W. W.

Mueller, H. R.

M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
[PubMed]

Müller, H.-R.

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

Nellen, P. M.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

Ommer, J.

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

Patrick, H. J.

C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
[CrossRef] [PubMed]

Payne, D. N.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

Putnam, M. A.

Reekie, L.

L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
[CrossRef] [PubMed]

J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

Rose, K.

H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
[CrossRef] [PubMed]

K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
[CrossRef] [PubMed]

Rothhardt, M.

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
[PubMed]

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

Rummyantsev, S. D.

V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
[PubMed]

Russell, P. St. J.

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, and P. St. J. Russell, "Bragg gratings in Ce3+-doped fibers written by a single excimer pulse," Opt. Lett. 18, 861-863 (1993).
[CrossRef] [PubMed]

Sakaguchi, S.

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

Semjonov, S. L.

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

Sennhauser, U.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

Shchebunyaev, A. G.

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

Shen, Y.

Staudiegel, L.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

Sun, T.

Sysoliatin, A. A.

V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
[PubMed]

Trutzel, M. N.

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

Tsai, T.-E.

Wagatsuma, M.

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

Williams, G. M.

Wolter, H.

K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
[CrossRef] [PubMed]

H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
[CrossRef] [PubMed]

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

Br. J. Appl. Phys. (1)

R. G. C. Arridge and D. Heywood, "The freeze-coating of filaments," Br. J. Appl. Phys. 18, 447-457 (1967).
[CrossRef] [PubMed]

Electron. Lett. (5)

J.-L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef] [PubMed]

L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef] [PubMed]

C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, "Fiber strength unaffected by on-line writing of single-pulse Bragg gratings," Electron. Lett. 33, 1333-1334 (1997).
[CrossRef] [PubMed]

V. Hagemann, M. N. Trutzel, L. Staudiegel, M. Rothhardt, H.-R. Müller, and O. Krumbholz, "Mechanical resistance of draw-tower-Bragg-grating sensors," Electron. Lett. 34, 211-212 (1998).
[CrossRef] [PubMed]

K. Chida, S. Sakaguchi, M. Wagatsuma, and T. Kimura, "High speed coating of optical fibers with thermally curable silicone resin using a pressurised die," Electron. Lett. 18, 713-715 (1982).
[CrossRef] [PubMed]

IEEE Sens. J. (1)

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Polymer-coated fiber Bragg grating for relative humidity sensing," IEEE Sens. J. 5, 1082-1089 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

O. H. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef] [PubMed]

Mater. Res. Soc. Symp. Proc. (2)

H. Wolter, W. Glaubitt, and K. Rose, "Multifunctional (meth) acrylate alkoxysilanes--a new type of reactive compounds," Mater. Res. Soc. Symp. Proc. 271, 719-724 (1992).
[CrossRef] [PubMed]

K. Rose, H. Wolter, and W. Glaubitt, "Multifunctional acrylate akoxysilanes for polymeric materials," Mater. Res. Soc. Symp. Proc. 271, 731-736 (1992).
[CrossRef] [PubMed]

Opt. Lett. (5)

Tech. Mess. (1)

C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer, and M. Rothhardt, "Fiber Bragg gratings for high temperature sensing application," Tech. Mess. 10, 555-562 (2004).
[CrossRef] [PubMed]

Other (5)

M. Rothhardt, C. Chojetzki, and H. R. Mueller, "High-mechanical-strength single-pulse draw tower gratings," in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers, Proc. SPIE 5579, 127-135 (2004).
[PubMed]

S. L. Semjonov, M. M. Bubnov, E. M. Dianov, and A. G. Shchebunyaev, "Reliability of aluminium coated fibers at high temperature," in Fiber Optics Reliability and Testing: Benign and Adverse Environments, Proc. SPIE 2074, 25-33 (1993).
[PubMed]

V. A. Bogatyrjov, E. M. Dianov, S. D. Rummyantsev, and A. A. Sysoliatin, "Copper-coated optical fibers," in Technical Digest Series (Optical Society of America, 1993), pp. 78-79.
[PubMed]

C. G. Askins, G. M. Williams, M. Bashkansky, and E. J. Friebele, "Fiber Bragg reflectors by single excimer pulse," Fiber Optic Smart Structures and Skins V, Proc. SPIE 1798, 66-71 (1992).
[PubMed]

P. Mauron, P. M. Nellen, U. Sennhauser, M. N. Trutzel, D. Betz, L. Staudiegel, V. Hagemann, and M. Rothhardt, "Lifetime of fibre Bragg gratings under cyclic fatigue," in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 212-220 (1999).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Refractive index profile of cerium- and germanium-doped preforms.

Fig. 2
Fig. 2

Photosensitivity of different fibers, investigated with multiple laser pulses (grating length 6   mm , interferometric recording setup, recording wavelength: 248   nm , laser pulse energy 250   mJ , beam size: 7   mm × 15   mm ).

Fig. 3
Fig. 3

TGA of polyimide PMGI SF23 in comparison with ORMOCER (heat rate: 10   K / min , atmosphere: air). Inset: chemical base of standard ORMOCER.

Fig. 4
Fig. 4

Talbot interferometer for recording single-pulse draw-tower fiber gratings.

Fig. 5
Fig. 5

FBG arrays, manufactured during the fiber drawing process (array of five FBGs with high and uniform reflectivities).

Fig. 6
Fig. 6

Examples of optical properties of FBGs of type II, recorded with a single pulse during the fiber drawing process: (a) transmission spectra of two different fiber gratings, (b) reflection spectrum of an array of two fiber gratings.

Fig. 7
Fig. 7

Optically visible structural changes in core and neighboring cladding areas for a recording energy density of 1 J / cm 2 at 248   nm .

Fig. 8
Fig. 8

Different thermal stabilities of single-pulse FBGs, recorded with different energy densities.

Fig. 9
Fig. 9

Long-term temperature characteristics of a type-II FBG.

Fig. 10
Fig. 10

High-temperature FBG in Al-coated fiber with local Al-recoating (top).

Fig. 11
Fig. 11

Temperature characteristics of an Al-recoated type-II grating and a bare type-II grating.

Fig. 12
Fig. 12

Temperature cycle between room temperature and 450   ° C of an Al-recoated fiber glued into a steel capillary.

Tables (2)

Tables Icon

Table 1 Preform Core Doping

Tables Icon

Table 2 Fiber Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ UV / 2   sin   Θ FBG .
λ B = 2 n eff Λ .

Metrics