Abstract

The goal of this study is to test the feasibility of using an embedded time-resolved fluorescence sensor for monitoring glucose concentration. Skin is modeled as a multilayer medium with each layer having its own optical properties and fluorophore absorption coefficients, lifetimes, and quantum yields obtained from the literature. It is assumed that the two main fluorophores contributing to the fluorescence at these excitation and emission wavelengths are nicotinamide adenine dinucleotide (NAD)H and collagen. The intensity distributions of excitation and fluorescent light in skin are determined by solving the transient radiative transfer equation by using the modified method of characteristics. The fluorophore lifetimes are then recovered from the simulated fluorescence decays and compared with the actual lifetimes used in the simulations. Furthermore, the effect of adding Poissonian noise to the simulated decays on recovering the lifetimes was studied. For all cases, it was found that the fluorescence lifetime of NADH could not be recovered because of its negligible contribution to the overall fluorescence signal. The other lifetimes could be recovered to within 1.3% of input values. Finally, the glucose concentrations within the skin were recovered to within 13.5% of their actual values, indicating a possibility of measuring glucose concentrations by using a time-resolved fluorescence sensor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
    [CrossRef] [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Ann. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef]
  3. M. McShane, S. Rastegar, and G. Cote, "Fluorescence-based implantable biosensors: Monte Carlo modeling for optical probe design," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1998), Vol. 4, pp. 1799-1802.
  4. M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
    [CrossRef] [PubMed]
  5. D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
    [CrossRef]
  6. N. DiCesare and J. R. Lakowicz, "Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing," Anal. Biochem. 294, 154-160 (2001).
    [CrossRef] [PubMed]
  7. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
  8. M. Keijzer, R. Richards-Kortum, S. Jacques, and M. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
    [CrossRef] [PubMed]
  9. I. V. Meglinski and D. Y. Churmakov, "A novel Monte Carlo method for the optical diagnostics of skin," Proc. SPIE 5141, 133-141 (2003).
    [CrossRef]
  10. I. V. Meglinski, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 5254, 30-43 (2003).
    [CrossRef]
  11. H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
    [CrossRef]
  12. K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
    [CrossRef] [PubMed]
  13. M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
    [CrossRef]
  14. K. Vishwanath and M.-A. Mycek, "Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?" Opt. Lett. 29, 1512-1514 (2004).
    [CrossRef] [PubMed]
  15. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  16. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  17. E. M. Sevick-Muraca and D. Y. Paithankar, "Imaging of fluorescence yield and lifetime from multiply scattered light re-emitted from random media," Proc. SPIE 2980, 303-318 (1997).
  18. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
    [CrossRef] [PubMed]
  19. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
    [CrossRef] [PubMed]
  20. B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6536-6366 (2001).
    [CrossRef]
  21. H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
    [CrossRef] [PubMed]
  22. R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
    [CrossRef] [PubMed]
  23. K. Katika and L. Pilon, "Modified method of characteristics in transient radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 98, 220-237 (2006).
    [CrossRef]
  24. K. Katika and L. Pilon, "Steady-state directional diffuse reflectance and fluorescence of human skin," Appl. Opt. 45, 4174-4183 (2006).
    [CrossRef] [PubMed]
  25. J. Enderlein and R. Erdmann, "Fast fitting of multi-exponential decay curves," Opt. Commun. 134, 371-378 (1997).
    [CrossRef]
  26. "Fluofit--a MATLAB package for fitting multiexponential fluorescence decay curves," http://www.fz-juelich.de/ibi/ibi-1/enderlein/joerg/fluo/fluo.html, last accessed 22 December 2005.
  27. A. Huntley and R. Drugge, "Anatomy of the skin, the electronic textbook of dermatology," http://www.telemedicine.org/stamford.htm, last accessed 5 February 2007.
  28. I. V. Meglinski and S. J. Matcher, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 4241, 78-87 (2001).
    [CrossRef]
  29. A. Krishnaswamy and G. V. G. Baranoski, A Study on Skin Optics, Technical Report CS-2004-01 (School of Computer Science, University of Waterloo, 2004).
  30. V. Tuchin, ed., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  31. M. F. Modest, Radiative Heat Transfer (Academic, 2002).
  32. H. Quan and Z. Guo, "Fast 3-D optical imaging with transient fluorescence signals," Opt. Express 12, 449-457 (2004).
    [CrossRef] [PubMed]
  33. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
    [CrossRef]
  34. J. Q. Lu, X.-H. Hu, and K. Dong, "Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom," Appl. Opt. 39, 5890-5897 (2000).
    [CrossRef]
  35. K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
    [CrossRef] [PubMed]
  36. J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Rev. Sci. Instrum. 72, 3061-3072 (2001).
    [CrossRef]
  37. G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
    [CrossRef] [PubMed]
  38. G. W. Hopkins and G. R. Mauze, "In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects," Proc. SPIE 3597, 632-641 (1999).
    [CrossRef]
  39. C.-Y. Wu, "Propagation of scattered radiation in a participating planar medium with pulse irradiation," J. Quant. Spectrosc. Radiat. Transfer 64, 537-548 (2000).
    [CrossRef]
  40. D. Baillis, L. Pilon, H. Randrianalisoa, R. Gomez, and R. Viskanta, "Measurements of radiation characteristics of fused quartz containing bubbles," J. Opt. Soc. Am. A 21, 149-159 (2004).
    [CrossRef]
  41. J. Enderlein, "Comments on Fluofit and fitting fluorescence decay curves," Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, PF 10 10 42, D-93040 Regensburg, Germany (personal communication, 2006).
  42. K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
    [CrossRef]
  43. A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
    [CrossRef] [PubMed]
  44. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9, 339-346 (2004).
    [CrossRef] [PubMed]
  45. A. Huntley and R. Drugge, "Diabetes in skin disease. The electronic textbook of dermatology," http://www.telemedicine.org/dm/dmupdate.htm, last accessed 5 February 2007.
  46. E. Hull, M. Ediger, A. Unione, E. Deemer, M. Stroman, and J. Baynes, "Noninvasive, optical detection of diabetes: model studies with porcine skin," Opt. Express 12, 4496-4510 (2004).
    [CrossRef] [PubMed]
  47. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

2006

K. Katika and L. Pilon, "Modified method of characteristics in transient radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 98, 220-237 (2006).
[CrossRef]

K. Katika and L. Pilon, "Steady-state directional diffuse reflectance and fluorescence of human skin," Appl. Opt. 45, 4174-4183 (2006).
[CrossRef] [PubMed]

J. Enderlein, "Comments on Fluofit and fitting fluorescence decay curves," Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, PF 10 10 42, D-93040 Regensburg, Germany (personal communication, 2006).

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

2005

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

2004

2003

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

I. V. Meglinski and D. Y. Churmakov, "A novel Monte Carlo method for the optical diagnostics of skin," Proc. SPIE 5141, 133-141 (2003).
[CrossRef]

I. V. Meglinski, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 5254, 30-43 (2003).
[CrossRef]

2002

K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

2001

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

N. DiCesare and J. R. Lakowicz, "Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing," Anal. Biochem. 294, 154-160 (2001).
[CrossRef] [PubMed]

B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6536-6366 (2001).
[CrossRef]

J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Rev. Sci. Instrum. 72, 3061-3072 (2001).
[CrossRef]

I. V. Meglinski and S. J. Matcher, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 4241, 78-87 (2001).
[CrossRef]

2000

C.-Y. Wu, "Propagation of scattered radiation in a participating planar medium with pulse irradiation," J. Quant. Spectrosc. Radiat. Transfer 64, 537-548 (2000).
[CrossRef]

J. Q. Lu, X.-H. Hu, and K. Dong, "Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom," Appl. Opt. 39, 5890-5897 (2000).
[CrossRef]

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

1999

G. W. Hopkins and G. R. Mauze, "In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects," Proc. SPIE 3597, 632-641 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

1998

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

1997

J. Enderlein and R. Erdmann, "Fast fitting of multi-exponential decay curves," Opt. Commun. 134, 371-378 (1997).
[CrossRef]

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca and D. Y. Paithankar, "Imaging of fluorescence yield and lifetime from multiply scattered light re-emitted from random media," Proc. SPIE 2980, 303-318 (1997).

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
[CrossRef] [PubMed]

1996

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Ann. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

1995

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

1994

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

1992

G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
[CrossRef] [PubMed]

1989

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Anderson, R. R.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

Baillis, D.

Baranoski, G. V. G.

A. Krishnaswamy and G. V. G. Baranoski, A Study on Skin Optics, Technical Report CS-2004-01 (School of Computer Science, University of Waterloo, 2004).

Barbour, R. L.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Baynes, J.

Berberoglu, H.

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

Blackwell, J.

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

Boas, D. A.

Chance, B.

Chen, A. U.

Chen, B.

B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6536-6366 (2001).
[CrossRef]

Churmakov, D. Y.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9, 339-346 (2004).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

I. V. Meglinski and D. Y. Churmakov, "A novel Monte Carlo method for the optical diagnostics of skin," Proc. SPIE 5141, 133-141 (2003).
[CrossRef]

Cote, G.

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

M. McShane, S. Rastegar, and G. Cote, "Fluorescence-based implantable biosensors: Monte Carlo modeling for optical probe design," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1998), Vol. 4, pp. 1799-1802.

Cote, G. L.

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Deemer, E.

DiCesare, N.

N. DiCesare and J. R. Lakowicz, "Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing," Anal. Biochem. 294, 154-160 (2001).
[CrossRef] [PubMed]

Dipple, K.

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

Dong, K.

Drugge, R.

A. Huntley and R. Drugge, "Anatomy of the skin, the electronic textbook of dermatology," http://www.telemedicine.org/stamford.htm, last accessed 5 February 2007.

A. Huntley and R. Drugge, "Diabetes in skin disease. The electronic textbook of dermatology," http://www.telemedicine.org/dm/dmupdate.htm, last accessed 5 February 2007.

Ediger, M.

Enderlein, J.

J. Enderlein, "Comments on Fluofit and fitting fluorescence decay curves," Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, PF 10 10 42, D-93040 Regensburg, Germany (personal communication, 2006).

J. Enderlein and R. Erdmann, "Fast fitting of multi-exponential decay curves," Opt. Commun. 134, 371-378 (1997).
[CrossRef]

Erdmann, R.

J. Enderlein and R. Erdmann, "Fast fitting of multi-exponential decay curves," Opt. Commun. 134, 371-378 (1997).
[CrossRef]

Evans, N.

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

Feld, M.

Fox, M. D.

G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
[CrossRef] [PubMed]

Gillies, R.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

Gomez, R.

Greenhalgh, D. A.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9, 339-346 (2004).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

Guo, Z.

Hielscher, A.

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

Hopkins, G. W.

G. W. Hopkins and G. R. Mauze, "In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects," Proc. SPIE 3597, 632-641 (1999).
[CrossRef]

Hu, X.-H.

Hull, E.

Huntley, A.

A. Huntley and R. Drugge, "Diabetes in skin disease. The electronic textbook of dermatology," http://www.telemedicine.org/dm/dmupdate.htm, last accessed 5 February 2007.

A. Huntley and R. Drugge, "Anatomy of the skin, the electronic textbook of dermatology," http://www.telemedicine.org/stamford.htm, last accessed 5 February 2007.

Hussain, F.

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

Jacques, S.

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

M. Keijzer, R. Richards-Kortum, S. Jacques, and M. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
[CrossRef] [PubMed]

Katika, K.

K. Katika and L. Pilon, "Modified method of characteristics in transient radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 98, 220-237 (2006).
[CrossRef]

K. Katika and L. Pilon, "Steady-state directional diffuse reflectance and fluorescence of human skin," Appl. Opt. 45, 4174-4183 (2006).
[CrossRef] [PubMed]

Katika, K. M.

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

Keijzer, M.

Kollias, N.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

König, K.

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

Krishnaswamy, A.

A. Krishnaswamy and G. V. G. Baranoski, A Study on Skin Optics, Technical Report CS-2004-01 (School of Computer Science, University of Waterloo, 2004).

Lakowicz, J. R.

N. DiCesare and J. R. Lakowicz, "Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing," Anal. Biochem. 294, 154-160 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Levin, S.

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

Li, X. D.

Lu, J. Q.

MacAulay, C.

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

MacAulay, C. E.

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 4241, 78-87 (2001).
[CrossRef]

Mauze, G. R.

G. W. Hopkins and G. R. Mauze, "In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects," Proc. SPIE 3597, 632-641 (1999).
[CrossRef]

McLean, D. I.

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

McShane, M.

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

M. McShane, S. Rastegar, and G. Cote, "Fluorescence-based implantable biosensors: Monte Carlo modeling for optical probe design," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1998), Vol. 4, pp. 1799-1802.

McShane, M. J.

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

Meglinski, I. V.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9, 339-346 (2004).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

I. V. Meglinski and D. Y. Churmakov, "A novel Monte Carlo method for the optical diagnostics of skin," Proc. SPIE 5141, 133-141 (2003).
[CrossRef]

I. V. Meglinski, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 5254, 30-43 (2003).
[CrossRef]

I. V. Meglinski and S. J. Matcher, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 4241, 78-87 (2001).
[CrossRef]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (Academic, 2002).

Mycek, M.-A.

K. Vishwanath and M.-A. Mycek, "Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?" Opt. Lett. 29, 1512-1514 (2004).
[CrossRef] [PubMed]

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Rev. Sci. Instrum. 72, 3061-3072 (2001).
[CrossRef]

Nishioka, N. S.

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

Northrop, R. B.

G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
[CrossRef] [PubMed]

O'Leary, M. A.

O'Neal, D. P.

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

Paithankar, D. Y.

E. M. Sevick-Muraca and D. Y. Paithankar, "Imaging of fluorescence yield and lifetime from multiply scattered light re-emitted from random media," Proc. SPIE 2980, 303-318 (1997).

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
[CrossRef] [PubMed]

Palcic, B.

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

Patterson, M. S.

Pickup, J.

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Piletsky, S. A.

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

Pilon, L.

K. Katika and L. Pilon, "Steady-state directional diffuse reflectance and fluorescence of human skin," Appl. Opt. 45, 4174-4183 (2006).
[CrossRef] [PubMed]

K. Katika and L. Pilon, "Modified method of characteristics in transient radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 98, 220-237 (2006).
[CrossRef]

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

D. Baillis, L. Pilon, H. Randrianalisoa, R. Gomez, and R. Viskanta, "Measurements of radiation characteristics of fused quartz containing bubbles," J. Opt. Soc. Am. A 21, 149-159 (2004).
[CrossRef]

Pishko, M.

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

Pishko, M. V.

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

Pitts, J. D.

J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Rev. Sci. Instrum. 72, 3061-3072 (2001).
[CrossRef]

Pogue, B.

K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Pogue, B. W.

Quan, H.

Randrianalisoa, H.

Rastegar, S.

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

M. McShane, S. Rastegar, and G. Cote, "Fluorescence-based implantable biosensors: Monte Carlo modeling for optical probe design," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1998), Vol. 4, pp. 1799-1802.

Richards-Kortum, R.

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Ann. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

M. Keijzer, R. Richards-Kortum, S. Jacques, and M. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989).
[CrossRef] [PubMed]

Riemann, I.

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

Sachedina, N.

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

Schomacker, K. T.

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Ann. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

Sevick-Muraca, E. M.

E. M. Sevick-Muraca and D. Y. Paithankar, "Imaging of fluorescence yield and lifetime from multiply scattered light re-emitted from random media," Proc. SPIE 2980, 303-318 (1997).

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
[CrossRef] [PubMed]

Sorbellini, E.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Stamnes, J. J.

B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6536-6366 (2001).
[CrossRef]

Stamnes, K.

B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6536-6366 (2001).
[CrossRef]

Stroman, M.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Tittel, F.

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Tuchin, V.

V. Tuchin, ed., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

Unione, A.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

Vishwanath, K.

K. Vishwanath and M.-A. Mycek, "Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?" Opt. Lett. 29, 1512-1514 (2004).
[CrossRef] [PubMed]

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Viskanta, R.

Wang, L.

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

Wu, C.-Y.

C.-Y. Wu, "Propagation of scattered radiation in a participating planar medium with pulse irradiation," J. Quant. Spectrosc. Radiat. Transfer 64, 537-548 (2000).
[CrossRef]

Yodh, A. G.

Zeng, H.

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

Zonios, G.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

Anal. Biochem.

N. DiCesare and J. R. Lakowicz, "Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing," Anal. Biochem. 294, 154-160 (2001).
[CrossRef] [PubMed]

Ann. Rev. Phys. Chem.

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnostics," Ann. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

Appl. Opt.

Biosens. Bioelectron.

J. Pickup, F. Hussain, N. Evans, and N. Sachedina, "In vivo glucose monitoring: the clinical reality and the promise," Biosens. Bioelectron. 20, 1897-902 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and E. Sorbellini, "Fluorescence lifetime imaging: an application to the detection of skin tumors," IEEE J. Sel. Top. Quantum Electron. 5, 122-132 (1999).

IEEE Trans. Biomed. Eng.

G. L. Cote, M. D. Fox, and R. B. Northrop, "Noninvasive optical polarimetric glucose sensing using a true phase measurement technique," IEEE Trans. Biomed. Eng. 39, 752-756 (1992).
[CrossRef] [PubMed]

M. McShane, S. Rastegar, M. Pishko, and G. Cote, "Monte Carlo modeling for implantable fluorescent analyte sensors," IEEE Trans. Biomed. Eng. 47, 624-632 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, "Amending of fluorescence sensor signal localization in human skin by matching of the refractive index," J. Biomed. Opt. 9, 339-346 (2004).
[CrossRef] [PubMed]

J. Investig. Dermatol.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, "Fluorescence excitation spectroscopy provides information about human skin in vivo," J. Investig. Dermatol. 115, 704-707 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Photochem. Photobiol. B

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation," J. Photochem. Photobiol. B 38, 234-240 (1997).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transfer

K. Katika and L. Pilon, "Modified method of characteristics in transient radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 98, 220-237 (2006).
[CrossRef]

C.-Y. Wu, "Propagation of scattered radiation in a participating planar medium with pulse irradiation," J. Quant. Spectrosc. Radiat. Transfer 64, 537-548 (2000).
[CrossRef]

Opt. Commun.

J. Enderlein and R. Erdmann, "Fast fitting of multi-exponential decay curves," Opt. Commun. 134, 371-378 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

K. Vishwanath, B. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998).
[CrossRef] [PubMed]

A. Hielscher, S. Jacques, L. Wang, and F. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

Proc. SPIE

K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, and H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).
[CrossRef]

G. W. Hopkins and G. R. Mauze, "In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects," Proc. SPIE 3597, 632-641 (1999).
[CrossRef]

D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, "Skin fluorescence model based on the Monte Carlo technique," Proc. SPIE 5068, 326-333 (2003).
[CrossRef]

I. V. Meglinski and S. J. Matcher, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 4241, 78-87 (2001).
[CrossRef]

M.-A. Mycek, K. Vishwanath, B. W. Pogue, K. T. Schomacker, and N. S. Nishioka, "Simulations of time-resolved fluorescence in multilayered biological tissues: applications to clinical data modeling," Proc. SPIE 4958, 51-59 (2003).
[CrossRef]

E. M. Sevick-Muraca and D. Y. Paithankar, "Imaging of fluorescence yield and lifetime from multiply scattered light re-emitted from random media," Proc. SPIE 2980, 303-318 (1997).

D. P. O'Neal, M. J. McShane, M. V. Pishko, and G. L. Cote, "Implantable biosensors: analysis of fluorescent light propagation through skin," Proc. SPIE 4263, 20-24 (2001).
[CrossRef]

I. V. Meglinski and D. Y. Churmakov, "A novel Monte Carlo method for the optical diagnostics of skin," Proc. SPIE 5141, 133-141 (2003).
[CrossRef]

I. V. Meglinski, "Monte Carlo method in optical diagnostics of skin and skin tissues," Proc. SPIE 5254, 30-43 (2003).
[CrossRef]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, "Monte Carlo modeling of tissue autofluorescence measurement and imaging," Proc. SPIE 2135, 94-104 (1994).
[CrossRef]

Rev. Sci. Instrum.

J. D. Pitts and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Rev. Sci. Instrum. 72, 3061-3072 (2001).
[CrossRef]

Other

J. Enderlein, "Comments on Fluofit and fitting fluorescence decay curves," Institute of Analytical Chemistry, Chemo- und Biosensors, University of Regensburg, PF 10 10 42, D-93040 Regensburg, Germany (personal communication, 2006).

A. Huntley and R. Drugge, "Diabetes in skin disease. The electronic textbook of dermatology," http://www.telemedicine.org/dm/dmupdate.htm, last accessed 5 February 2007.

M. McShane, S. Rastegar, and G. Cote, "Fluorescence-based implantable biosensors: Monte Carlo modeling for optical probe design," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1998), Vol. 4, pp. 1799-1802.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

A. Krishnaswamy and G. V. G. Baranoski, A Study on Skin Optics, Technical Report CS-2004-01 (School of Computer Science, University of Waterloo, 2004).

V. Tuchin, ed., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

M. F. Modest, Radiative Heat Transfer (Academic, 2002).

"Fluofit--a MATLAB package for fitting multiexponential fluorescence decay curves," http://www.fz-juelich.de/ibi/ibi-1/enderlein/joerg/fluo/fluo.html, last accessed 22 December 2005.

A. Huntley and R. Drugge, "Anatomy of the skin, the electronic textbook of dermatology," http://www.telemedicine.org/stamford.htm, last accessed 5 February 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of excitation and detection of reflectance and autofluorescence used in the simulations.

Fig. 2
Fig. 2

Normalized hemispherical reflectance and autofluorescence at 577   nm from a five-layer skin model exposed to a collimated nanosecond pulse at 337   nm as a function of time.

Fig. 3
Fig. 3

Normalized hemispherical fluorescence at 577   nm from a two-layer skin model with an implanted glucose sensor, exposed to a collimated nanosecond pulse at 337   nm as a function of time.

Fig. 4
Fig. 4

Normalized hemispherical fluorescence at 577   nm from a two-layer skin model exposed to a collimated nanosecond pulse at 337   nm with added Poisson noise.

Tables (3)

Tables Icon

Table 1 Optical Properties in the Five- and Two-Layer Skin Models a

Tables Icon

Table 2 Comparison of Input and Recovered Fluorescence Lifetimes of Normal Skin for Two-Layer Skin Model

Tables Icon

Table 3 Comparison of Input and Recovered Lifetimes from a Two-Layer Skin Model

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 c λ x I λ x ( r , s ^ , t ) t + ( s ^ · ) I λ x ( r , s ^ , t ) = μ a , λ x I λ x ( r , s ^ , t ) μ s , λ x I λ x ( r , s ^ , t ) + μ s , λ x 4 π 4 π I λ x ( r , s ^ i , t ) p λ x ( s ^ i , s ^ ) d ω i ,
1 c λ F I λ F ( r , s ^ , t ) t + ( s ^ · ) I λ F ( r , s ^ , t ) = μ a , λ F I λ F ( r , s ^ , t ) μ s , λ F I λ F ( r , s ^ , t ) + μ s , λ F 4 π 4 π I λ F ( r , s ^ i , t ) p λ F ( s ^ i , s ^ ) d ω i + Q Y λ x μ a , λ x F 4 π τ λ x 0 t exp [ ( t t τ λ x ) ] G λ x ( r , t ) d t .
p λ ( Θ ) = 1 g λ 2 ( 1 + g λ 2 2 g λ  cos   Θ ) 3 / 2 ,
I i ( t ) = I 0  exp [ 4  ln ( 2 ) ( t t c t p ) 2 ] .
R ( t ) = 2 π π / 2 n I λ x ( 0 , θ , t ) cos   θ   sin   θ d θ ,
F ( t ) = 2 π π / 2 n I λ F ( 0 , θ , t ) cos   θ   sin   θ d θ .
F ( t ) = i = 1 n f A i  exp ( t / τ i ) ,

Metrics