P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys.
Rev. E 67, 056605 (2003).

[CrossRef]

M. H. Xu, Y. Xu, and L.-H. V. Wang,
"Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).

[CrossRef]
[PubMed]

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang,
"Exact frequency-domain reconstruction for thermoacoustic tomography-I:
planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect.,
Freq. Control 47, 256-264 (2000).

[CrossRef]

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).

[CrossRef]

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel,
"Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J.
Appl. Phys. 63, 46-51 (1988).

[CrossRef]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect.,
Freq. Control 47, 256-264 (2000).

[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Y. Xu, D. Z. Feng, and L.-H. V. Wang,
"Exact frequency-domain reconstruction for thermoacoustic tomography-I:
planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect.,
Freq. Control 47, 256-264 (2000).

[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect.,
Freq. Control 47, 256-264 (2000).

[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel,
"Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J.
Appl. Phys. 63, 46-51 (1988).

[CrossRef]

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).

[CrossRef]

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel,
"Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J.
Appl. Phys. 63, 46-51 (1988).

[CrossRef]

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel,
"Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J.
Appl. Phys. 63, 46-51 (1988).

[CrossRef]

V. A. Shutilov, *Fundamental Physics of Ultrasound* (Gordon and Breach, 1988).

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

M. H. Xu, Y. Xu, and L.-H. V. Wang,
"Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys.
Rev. E 67, 056605 (2003).

[CrossRef]

Y. Xu, D. Z. Feng, and L.-H. V. Wang,
"Exact frequency-domain reconstruction for thermoacoustic tomography-I:
planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).

[CrossRef]
[PubMed]

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys.
Rev. E 67, 056605 (2003).

[CrossRef]

M. H. Xu, Y. Xu, and L.-H. V. Wang,
"Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).

[CrossRef]
[PubMed]

M. H. Xu, Y. Xu, and L.-H. V. Wang,
"Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).

[CrossRef]
[PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang,
"Exact frequency-domain reconstruction for thermoacoustic tomography-I:
planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).

[CrossRef]
[PubMed]

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz,
"Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).

[CrossRef]

M. H. Xu, Y. Xu, and L.-H. V. Wang,
"Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).

[CrossRef]
[PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang,
"Exact frequency-domain reconstruction for thermoacoustic tomography-I:
planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).

[CrossRef]
[PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier,
and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).

[CrossRef]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect.,
Freq. Control 47, 256-264 (2000).

[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer,
and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).

[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl,
and S. L. Jacques,
"Iterative reconstruction algorithm for optoacoustic imaging," J.
Acoust. Soc. Am. 112, 1536-1544 (2002).

[CrossRef]
[PubMed]

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel,
"Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J.
Appl. Phys. 63, 46-51 (1988).

[CrossRef]

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).

[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi,
and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10,
024035 (2005).

[CrossRef]
[PubMed]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger,
"Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).

[CrossRef]
[PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica,
and L.-H. V. Wang,
"Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat.
Biotechnol. 21, 803-806 (2003).

[CrossRef]
[PubMed]

G. Ku, X. D. Wang, G. Stoica,
and L.-H. V. Wang,
"Multiple-bandwidth photoacoustic tomography," Phys.
Med. Biol. 49, 1329-1338 (2004).

[CrossRef]
[PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys.
Rev. E 67, 056605 (2003).

[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie,
and H. P. Weber,
"Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).

[CrossRef]
[PubMed]

V. A. Shutilov, *Fundamental Physics of Ultrasound* (Gordon and Breach, 1988).