Abstract

A three-dimensional photoacoustic imaging method is presented that uses a Mach–Zehnder interferometer for measurement of acoustic waves generated in an object by irradiation with short laser pulses. The signals acquired with the interferometer correspond to line integrals over the acoustic wave field. An algorithm for reconstruction of a three-dimensional image from such signals measured at multiple positions around the object is shown that is a combination of a frequency-domain technique and the inverse Radon transform. From images of a small source scanning across the interferometer beam it is estimated that the spatial resolution of the imaging system is in the range of 100 to about 300μm, depending on the interferometer beam width and the size of the aperture formed by the scan length divided by the source–detector distance. By taking an image of a phantom it could be shown that the imaging system in its present configuration is capable of producing three-dimensional images of objects with an overall size in the range of several millimeters to centimeters. Strategies are proposed how the technique can be scaled for imaging of smaller objects with higher resolution.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
    [CrossRef] [PubMed]
  2. H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
    [CrossRef]
  3. Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
    [CrossRef]
  4. G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).
    [CrossRef]
  5. M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
    [CrossRef] [PubMed]
  6. K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
    [CrossRef]
  7. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
    [CrossRef] [PubMed]
  8. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
    [CrossRef] [PubMed]
  9. A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).
  10. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  11. K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
    [CrossRef] [PubMed]
  12. Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
    [CrossRef] [PubMed]
  13. M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605 (2003).
    [CrossRef]
  14. M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
    [CrossRef]
  15. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
    [CrossRef]
  16. M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
    [CrossRef] [PubMed]
  17. G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).
  18. V. A. Shutilov, Fundamental Physics of Ultrasound (Gordon and Breach, 1988).

2005

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

2004

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

2003

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605 (2003).
[CrossRef]

M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef] [PubMed]

2002

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

2001

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

2000

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
[CrossRef]

1997

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).
[CrossRef]

1994

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

1988

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
[CrossRef]

Beard, Paul C.

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
[CrossRef]

Bebie, H.

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

Burgholzer, P.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

Diebold, G. J.

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Feng, D. Z.

Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Frauchiger, D.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Frenz, M.

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Haltmeier, M.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

Hejazi, M.

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

Hofer, C.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

Hurrell, Andrew M.

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
[CrossRef]

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Jaeger, M.

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Kostli, K. P.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Ku, G.

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Mills, Tim N.

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
[CrossRef]

Niederhauser, J. J.

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

Paltauf, G.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).
[CrossRef]

Pang, Y. J.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Reichel, E.

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
[CrossRef]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

Scherzer, O.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

Schmidt-Kloiber, H.

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).
[CrossRef]

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
[CrossRef]

Schoeffmann, H.

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
[CrossRef]

Shutilov, V. A.

V. A. Shutilov, Fundamental Physics of Ultrasound (Gordon and Breach, 1988).

Stoica, G.

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Sun, T.

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Wang, L.-H. V.

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef] [PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605 (2003).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Wang, X. D.

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Weber, H. P.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

Xie, X. Y.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Xu, M. H.

M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef] [PubMed]

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Xu, Y.

M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef] [PubMed]

Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Acustica

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

IEEE J. Sel. Top. Quantum Electron.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

M. H. Xu, Y. Xu, and L.-H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

Y. Xu, D. Z. Feng, and L.-H. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

IEEE Trans. Ultrason.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef]

Paul C. Beard, Andrew M. Hurrell, and Tim N. Mills, "Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelect., Freq. Control 47, 256-264 (2000).
[CrossRef]

Inverse Probl.

M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, "Thermoacoustic computed tomography with large planar receivers," Inverse Probl. 20, 1663-1673 (2004).
[CrossRef]

J. Acoust. Soc. Am.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, "Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophones," J. Appl. Phys. 63, 46-51 (1988).
[CrossRef]

J. Appl. Phys.

G. Paltauf and H. Schmidt-Kloiber, "Measurement of laser-induced acoustic waves with a calibrated optical transducer," J. Appl. Phys. 82, 1525-1531 (1997).
[CrossRef]

J. Biomed. Opt.

M. Jaeger, J. J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005).
[CrossRef] [PubMed]

Laser Phys.

A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, "Optoacoustic tomography: new modality of laser diagnostic systems," Laser Phys. 13, 711-723 (2003).

Med. Phys.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Med. Phys. 30, 856-860 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol.

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L.-H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol.

G. Ku, X. D. Wang, G. Stoica, and L.-H. V. Wang, "Multiple-bandwidth photoacoustic tomography," Phys. Med. Biol. 49, 1329-1338 (2004).
[CrossRef] [PubMed]

Phys. Rev. E

M. H. Xu and L.-H. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Phys. Med Biol.

K. P. Kostli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med Biol. 46, 1863-1872 (2001).
[CrossRef] [PubMed]

Other

V. A. Shutilov, Fundamental Physics of Ultrasound (Gordon and Breach, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for photoacoustic tomography with a Mach–Zehnder interferometer as acoustic line detector. BS, beam splitter; M, mirror; BPD, balanced photodetector; L, lens; BF, bandpass filter.

Fig. 2
Fig. 2

Close-up of the Mach–Zehnder interferometer in the vicinity of the sample, showing the coordinate systems relative to the sample ( x , y , z ) and relative to the interferometer ( x , u , v ). During signal acquisition the sample is rotated by an angle θ about the x-axis and translated along the x-axis.

Fig. 3
Fig. 3

Signal from a 100 μ m diameter black absorber illuminated by an OPO pulse. The absorber was located 2 m m away from the interferometer beam.

Fig. 4
Fig. 4

Raw signals (left column) and reconstructed projections into the x-v-plane (right column) of a small source with 100 μ m diameter. The line detector was scanned along the x-direction at v = 0 . The raw signal array is an overlay of three measurements where the point source was at 2, 7 and 20 m m distance from the detector plane. For each distance the frequency-domain reconstruction was applied to measured signals to calculate the images shown in the right column.

Fig. 5
Fig. 5

Schematic drawing of the phantom used for three-dimensional PAT. Black plastic tubes with an outer diameter of 1.1 m m were embedded in light-scattering gelatine and arranged in two planes approximately 6 m m apart.

Fig. 6
Fig. 6

Slices from the three-dimensional image of the phantom.

Equations (105)

Equations on this page are rendered with MathJax. Learn more.

300 μ m
1 / t p
t p
c t
x , y , z
x , u , v
150 m m
100 μ m
> 40 m m
90 μ m
1500 m / s
60 n s
90 μ m
17 M H z
25 M H z
8 n s
7 m J
500 n m
600 μ m
4 m J / c m 2
Δ n = d n d p p .
Δ s = 0 L Δ n d u = d n d p 0 L p d u = d n d p p ¯ L ,
p ¯
Δ ϕ = 2 π Δ s λ ,
Δ ϕ L p ¯ = 2 π λ d n d p .
λ = 633 n m
d n / d p = 1.35 10 5 b a r 1
0.134 b a r 1 m m 1
1 m m
π / 23
p ( x , u , v , t )
v = 0
q ( x , t )
q ( x , t ) = p ( x , u , v = 0 , t ) d u .
q 0 ( x , v )
q 0 ( x , v ) = p 0 ( x , u , v ) d u
with   p 0 ( x , u , v ) p ( x , u , v , t = 0 )
Q 0 ( k x , k v )
q 0 ( x , v )
Q ( k x , ω )
k x
k v
Q 0 ( k x , k v ) = 2 c k v s i g n ( k v ) k x 2 + k v 2 Q ( k x , s i g n ( k v ) c k x 2 + k v 2 )
Q 0 ( k x , k v )
q 0 ( x , v )
x =
x = +
q 0 ( x , v )
q 0 ( x , v , θ )
p 0 ( x , y , z )
q 0 ( x , v , θ )
10 H z
500 μ m
50 μ m
20 m m
40 s
60 minutes
100 μ m
65 n s
90 μ m
v s
L / v s
297 μ m
v s = 2 m m
377 μ m
v s = 7 m m
768 μ m
v s = 20 m m
156 μ m
v s = 2 m m
141 μ m
v s = 7 m m
128 μ m
v s = 20 m m
2.7 m V
1.4 10 4
1 m m
1 m b a r
16.7 % w / w
1.1 m m
9 m m
100 μ m
130 μ m
( 100 μ m F W H M )
( y , z )
100 μ m
d n / d p
100 M H z
100 M H z
2.5 c m 1
4 m m
100 M H z
15 μ m
10 H z
10 100
15 μ m
x , y , z
x , u , v
100 μ m
2 m m
100 μ m
v = 0
20 m m
1.1 m m
6 m m

Metrics