Abstract

A spontaneous Raman scattering optical fiber sensor was developed for a specific need of the National Aeronautics and Space Administration (NASA) for long-term detection and monitoring of the purity of liquid oxygen (LO2) in the oxidizer feed line during ground testing of rocket engines. The Raman peak intensity ratios for liquid nitrogen (LN2) and LO2 with varied weight ratios (LN2/LO2) were analyzed for their applicability to impurity sensing. The study of the sensor performance with different excitation light sources has helped to design a miniaturized, cost-effective system for this application. The optimal system response time of this miniaturized sensor for LN2/LO2 measurement was found to be in the range of a few seconds. It will need to be further reduced to the millisecond range for real-time, quantitative monitoring of the quality of cryogenic fluids in a harsh envioronment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.
  2. M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
    [CrossRef]
  3. J. A. Akintunde, "Simple liquid nitrogen level monitor using copper wire as a sensor," Cryogenics 27, 266-268 (1987).
    [CrossRef]
  4. R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
    [CrossRef]
  5. K. T. V Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer Academic, 1999).
  6. J. R. Schmidt and S. T. Sanders, "Differential absorption sensor applied for liquid oxygen measurements," Appl. Opt. 44, 6058-6066 (2005).
    [CrossRef] [PubMed]
  7. A. M. Domashenko and Y. A. Kondrashkov, "Technology of quality control of liquefied methane-A fuel for space rocket systems," Chem. Pet. Eng. 39, 656-661 (2003).
    [CrossRef]
  8. M. J. Pelletier, Analytical Applications of Raman Spectroscopy (Blackwell Science, 1999).
  9. P. Atkins and J. de Paula, Physical Chemistry (W. H. Freeman, 2003).
  10. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).

2005 (1)

2003 (2)

A. M. Domashenko and Y. A. Kondrashkov, "Technology of quality control of liquefied methane-A fuel for space rocket systems," Chem. Pet. Eng. 39, 656-661 (2003).
[CrossRef]

M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
[CrossRef]

1999 (1)

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

1993 (1)

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

1987 (1)

J. A. Akintunde, "Simple liquid nitrogen level monitor using copper wire as a sensor," Cryogenics 27, 266-268 (1987).
[CrossRef]

Akintunde, J. A.

J. A. Akintunde, "Simple liquid nitrogen level monitor using copper wire as a sensor," Cryogenics 27, 266-268 (1987).
[CrossRef]

Atkins, P.

P. Atkins and J. de Paula, Physical Chemistry (W. H. Freeman, 2003).

Baker, G. L.

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

Claborn, G.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

de Paula, J.

P. Atkins and J. de Paula, Physical Chemistry (W. H. Freeman, 2003).

Domashenko, A. M.

A. M. Domashenko and Y. A. Kondrashkov, "Technology of quality control of liquefied methane-A fuel for space rocket systems," Chem. Pet. Eng. 39, 656-661 (2003).
[CrossRef]

Ghosh, R. N.

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

Grattan, K. T. V

K. T. V Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer Academic, 1999).

Haas, A.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).

Kondrashkov, Y. A.

A. M. Domashenko and Y. A. Kondrashkov, "Technology of quality control of liquefied methane-A fuel for space rocket systems," Chem. Pet. Eng. 39, 656-661 (2003).
[CrossRef]

Landis, R.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Meggitt, B. T.

K. T. V Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer Academic, 1999).

Nocera, Daniel G.

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

Nurge, M. A

M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
[CrossRef]

Pages, W.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Parry, R.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Pelletier, M. J.

M. J. Pelletier, Analytical Applications of Raman Spectroscopy (Blackwell Science, 1999).

Ruud, C.

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

Sanders, S. T.

Schmidt, J. R.

Smith, J.

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Walters, D.

M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
[CrossRef]

Youngquist, R.

M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. N. Ghosh, G. L. Baker, C. Ruud, and Daniel G. Nocera, "Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence," Appl. Phys. Lett. 75, 2885-2887 (1999).
[CrossRef]

Chem. Pet. Eng. (1)

A. M. Domashenko and Y. A. Kondrashkov, "Technology of quality control of liquefied methane-A fuel for space rocket systems," Chem. Pet. Eng. 39, 656-661 (2003).
[CrossRef]

Cryogenics (2)

M. A Nurge, R. Youngquist, and D. Walters, "Capacitance based mass metering for cryogenic fluids," Cryogenics 43, 501-506 (2003).
[CrossRef]

J. A. Akintunde, "Simple liquid nitrogen level monitor using copper wire as a sensor," Cryogenics 27, 266-268 (1987).
[CrossRef]

Other (5)

K. T. V Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer Academic, 1999).

M. J. Pelletier, Analytical Applications of Raman Spectroscopy (Blackwell Science, 1999).

P. Atkins and J. de Paula, Physical Chemistry (W. H. Freeman, 2003).

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950).

R. Parry, G. Claborn, A. Haas, R. Landis, W. Pages, and J. Smith, "A high reliability oxygen deficiency monitoring system," presented at the Particle Accelerator Conference, Washington D.C., 17-20 May 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Experimental setup of the optical fiber Raman sensor: (a) system based on an InPhotonic Raman probe and (b) prototype Raman system based on a reflection probe.

Fig. 2
Fig. 2

(a) Raman spectrum of a 40% LO 2 and 60% LN 2 ( LN 2 / LO 2 1.5 ) mixture. Laser wavelength, 532 nm . (b) Sensor response to the LN 2 and LO 2 mixture as a function of LN 2 concentration.

Fig. 3
Fig. 3

Intensity ratio variation of LN 2 and LO 2 against their weight ratios.

Fig. 4
Fig. 4

Area ratio variation of LN 2 and LO 2 against their weight ratios.

Fig. 5
Fig. 5

Raman spectrum for 60% LN 2 and 40% LO 2 ( LN 2 / LO 2 1.5 ) with the 670 nm diode laser: (a) raw spectrum, (b) background-subtracted spectrum.

Tables (2)

Tables Icon

Table 1 Details of the Excitation Sources

Tables Icon

Table 2 Estimation of the Raman Signal from 532 and 670 nm Lasers

Metrics