Abstract

A diode-pumped injection-seeded Nd:YAG laser system with an average output power of 38 W is described. The laser operates at 300Hz with pulse energies up to 130mJ. The temporal pulse shape is nominally flat in time and the pulse width is user selectable from 350 to 600ps. In addition, the spatial profile of the beam is near top hat with contrast <10%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.
  2. Y. Bo, A. Geng, Y. Bi, Z. Sun, X. Yang, Q. Peng, H. Li, R. Li, D. Cui, and Z. Xu, "High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design," Appl. Opt. 45, 2499-2503 (2006).
    [CrossRef] [PubMed]
  3. B. Le Garrec, G. Razé, P. Thro, and M. Gilbert, "High-average-power diode-array-pumped frequency-doubled YAG laser," Opt. Lett. 21, 1990-1992 (1996).
    [CrossRef]
  4. E. Honea, C. Ebbers, R. Beach, J. Speth, J. Skidmore, M. Emanuel, and S. Payne, "Analysis of an intracavity-doubled diode-pumped q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm," Opt. Lett. 23, 1203-1205 (1998).
    [CrossRef]
  5. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "High-brightness 138-W green laser based on an intracvity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett. 25, 105-107 (2000).
    [CrossRef]
  6. S. Seidel and N. Kugler, "Nd:YAG 200-W average-power oscillator-amplifier system with stimulated-Brillouin-scattering phase conjugation and depolarization compensation," J. Opt. Soc. Am. B 14, 1885-1888 (1997).
    [CrossRef]
  7. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, "360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate," Opt. Lett. 28, 1671-1673 (2003).
    [CrossRef] [PubMed]
  8. K. Furuta, T. Kojima, S. Fujikawa, and J. Nishimae, "Diode-pumped 1kW Q-switched Nd:YAG rod laser with high peak power and high beam quality," Appl. Opt. 44, 4119-4122 (2005).
    [CrossRef] [PubMed]
  9. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, "Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system," Appl. Opt. 44, 582-590 (2005).
    [CrossRef] [PubMed]
  10. S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001).
    [CrossRef]
  11. A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
    [CrossRef]
  12. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. QE-25, 214-220 (1989).
    [CrossRef]
  13. J. Zayhowski and C. Dill, "Diode-pumped passively q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
    [CrossRef] [PubMed]
  14. J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991).
    [CrossRef]
  15. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1993).
  16. M. Dymott and K. Weingarten, "Picosecond diode-pumped laser system with 9.3-W average power and 2.3-mJ pulse energy," Appl. Opt. 40, 3042-3045 (2001).
    [CrossRef]
  17. D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
    [CrossRef]
  18. M. Dawson, W. Schroeder, D. Norwood, A. Smirl, J. Weston, R. Ettelbrick, and R. Aubert, "Characterization of a high-gain picosecond flash-lamp-pumped Nd:YAG regenerative amplifier," Opt. Lett. 13, 990-992 (1998).
    [CrossRef]
  19. C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
    [CrossRef]
  20. S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
    [CrossRef]
  21. E. Moses, "The National Ignition Facility: Status and Plans for the Experimental Program," Fusion Sci. Technol. 44, 11-18 (2003).
  22. A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
    [CrossRef]
  23. D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
    [CrossRef]
  24. J. Honig, "Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers," Opt. Eng. 43, 2904-2911 (2004).
    [CrossRef]
  25. E. Bliss, "Pulse duration dependence of laser damage mechanisms," Opto-electronics 3, 99-101 (1971).
    [CrossRef]
  26. B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
    [CrossRef] [PubMed]
  27. K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
    [CrossRef]
  28. C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
    [CrossRef]
  29. M. D. Skeldon, "Optical pulse-shaping system based on an electronic optic modulator driven by an aperture-coupled-stripline electrical-waveform generator," J. Opt. Soc. Am. B 19, 2423-2426 (2002).
    [CrossRef]
  30. Koheras A/S, Blokken 84, DK-3460 Birkerod, Denmark.
  31. Keopsys SA, 21 Rue Louis de Broglie, 22300 Lannion, France.
  32. JMAR Technologies, Inc., 10905 Technology Place, San Diego, Calif. 92127, USA.
  33. R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
    [CrossRef]
  34. ONYX Optics Corporation, 6551 Sierra Lane, Dublin, Calif. 94568, USA.
  35. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
    [CrossRef]
  36. L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]

2007

C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
[CrossRef]

2006

2005

2004

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

J. Honig, "Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers," Opt. Eng. 43, 2904-2911 (2004).
[CrossRef]

2003

E. Moses, "The National Ignition Facility: Status and Plans for the Experimental Program," Fusion Sci. Technol. 44, 11-18 (2003).

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, "360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate," Opt. Lett. 28, 1671-1673 (2003).
[CrossRef] [PubMed]

2002

2001

S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001).
[CrossRef]

M. Dymott and K. Weingarten, "Picosecond diode-pumped laser system with 9.3-W average power and 2.3-mJ pulse energy," Appl. Opt. 40, 3042-3045 (2001).
[CrossRef]

2000

S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "High-brightness 138-W green laser based on an intracvity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett. 25, 105-107 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

1998

M. Dawson, W. Schroeder, D. Norwood, A. Smirl, J. Weston, R. Ettelbrick, and R. Aubert, "Characterization of a high-gain picosecond flash-lamp-pumped Nd:YAG regenerative amplifier," Opt. Lett. 13, 990-992 (1998).
[CrossRef]

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

E. Honea, C. Ebbers, R. Beach, J. Speth, J. Skidmore, M. Emanuel, and S. Payne, "Analysis of an intracavity-doubled diode-pumped q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm," Opt. Lett. 23, 1203-1205 (1998).
[CrossRef]

S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
[CrossRef]

1997

1996

B. Le Garrec, G. Razé, P. Thro, and M. Gilbert, "High-average-power diode-array-pumped frequency-doubled YAG laser," Opt. Lett. 21, 1990-1992 (1996).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

1995

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

1994

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

J. Zayhowski and C. Dill, "Diode-pumped passively q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

1991

J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991).
[CrossRef]

1989

J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. QE-25, 214-220 (1989).
[CrossRef]

1971

E. Bliss, "Pulse duration dependence of laser damage mechanisms," Opto-electronics 3, 99-101 (1971).
[CrossRef]

1963

L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Amano, S.

S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001).
[CrossRef]

Ashkenasi, D.

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Aubert, R.

Avizonis, P. V.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Beach, R.

Beach, R. J.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Bi, Y.

Bibeau, C. M.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Binder, A.

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Bliss, E.

E. Bliss, "Pulse duration dependence of laser damage mechanisms," Opto-electronics 3, 99-101 (1971).
[CrossRef]

Bo, Y.

Boudjemaa, L.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Bourderionnet, J.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Brignon, A.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Burdett, J.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Campeau, S.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Carosella, J.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Carr, C.

C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
[CrossRef]

Cassidy, K.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Cheng, Z.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Coic, H.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

Cui, D.

Dawson, M.

Degnan, J.

J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. QE-25, 214-220 (1989).
[CrossRef]

Deschaseaux, G.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

Dill, C.

Dittrich, T.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Dozier, C.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Dymott, M.

Ebbers, C.

Ebert, J.

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

Eichler, H.

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Emanuel, M.

Emanuel, M. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Ettelbrick, R.

Feit, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Fleming, D.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Flood, C.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

Forber, R.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Foster, R.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Frantz, L.

L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

French, G.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Fujikawa, S.

Furuta, K.

Gaeta, C.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Geng, A.

Gibson, D.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Gilbert, M.

Gleyze, J.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

Greiner, U.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

Gross, T.

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

Haan, S.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Hark, P.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Harris, D. G.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Hinkel, D.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Hogervorst, W.

S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
[CrossRef]

Honea, E.

Honea, E. C.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Honig, J.

J. Honig, "Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers," Opt. Eng. 43, 2904-2911 (2004).
[CrossRef]

Jaber, H.

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Jolly, A.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

Kageyama, N.

Kan, H.

Kappe, P.

Kelley, P.

J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991).
[CrossRef]

Kelsy, C.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Kiriyama, H.

Klingenberg, H.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1993).

Kojima, T.

Konno, S.

Kugler, N.

S. Seidel and N. Kugler, "Nd:YAG 200-W average-power oscillator-amplifier system with stimulated-Brillouin-scattering phase conjugation and depolarization compensation," J. Opt. Soc. Am. B 14, 1885-1888 (1997).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Lallier, E.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Langdon, A.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Le Garrec, B.

Li, H.

Li, R.

Lim, M.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Luce, J.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

Maldonado, J.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Marinak, M.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Mehl, O.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Menzel, R.

Miyajima, H.

Mochizuki, T.

S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001).
[CrossRef]

Monroe, R. S.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Morris, J.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Moses, E.

E. Moses, "The National Ignition Facility: Status and Plans for the Experimental Program," Fusion Sci. Technol. 44, 11-18 (2003).

Mrowka, S.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Nagai, T.

Nakatsuka, M.

Naungayan, J.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Newman, D.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Nishimae, J.

Nodvik, J.

L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

Norwood, D.

Ostermeyer, M.

Payne, S.

Payne, S. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Peng, Q.

Perry, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Powers, M.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Razé, G.

Rieger, H.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Riesbeck, T.

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Riggers, W.

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

Ristau, D.

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

Rubenchik, A.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Schiemann, S.

S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
[CrossRef]

Schroeder, W.

Seidel, S.

Selzer, R.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Shore, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Siegert, H.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Simon-Boisson, C.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Skeldon, M. D.

Skidmore, J.

Skidmore, J. A.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Smirl, A.

Smith, H.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Spaeth, M.

C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
[CrossRef]

Speth, J.

Starke, K.

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

Still, C.

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Stone, A.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Stuart, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Sun, Z.

Sutton, S. B.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

Thro, P.

Trenholme, J.

C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
[CrossRef]

Turcu, I.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Ubachs, W.

S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
[CrossRef]

van Driel, H.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

Walker, D.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Weingarten, K.

Weston, J.

Whitlock, R.

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Wulfmeyer, V.

Xu, Z.

Yamakawa, K.

Yang, X.

Yasui, K.

Yoshida, H.

Zayhowski, J.

J. Zayhowski and C. Dill, "Diode-pumped passively q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994).
[CrossRef]

C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007).
[CrossRef]

Fusion Sci. Technol.

E. Moses, "The National Ignition Facility: Status and Plans for the Experimental Program," Fusion Sci. Technol. 44, 11-18 (2003).

IEEE J. Quantum Electron.

S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998).
[CrossRef]

J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991).
[CrossRef]

J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. QE-25, 214-220 (1989).
[CrossRef]

S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001).
[CrossRef]

J. Appl. Phys.

L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003).
[CrossRef]

Opt. Eng.

A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003).
[CrossRef]

J. Honig, "Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers," Opt. Eng. 43, 2904-2911 (2004).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996).
[CrossRef]

Opto-electronics

E. Bliss, "Pulse duration dependence of laser damage mechanisms," Opto-electronics 3, 99-101 (1971).
[CrossRef]

Phys. Plasmas

D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Phys. Rev. Lett.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Proc. SPIE

K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000).
[CrossRef]

A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004).
[CrossRef]

Other

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1993).

ONYX Optics Corporation, 6551 Sierra Lane, Dublin, Calif. 94568, USA.

Koheras A/S, Blokken 84, DK-3460 Birkerod, Denmark.

Keopsys SA, 21 Rue Louis de Broglie, 22300 Lannion, France.

JMAR Technologies, Inc., 10905 Technology Place, San Diego, Calif. 92127, USA.

O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Schematic of the all-fiber-based master oscillator.

Fig. 2
Fig. 2

(Color online) Some temporal pulse shapes of the fiber-based oscillator are shown. The pulse shape can be varied by adjusting the relative timing between the pulse generator and the ASCL. These data show timing adjustments of 0, 100 ps , 200 ps , and 300 ps .

Fig. 3
Fig. 3

(Color online) Schematic layout of the regenerative amplifier. The regenerative amplifier consists of an end-diode-pumped Nd:YAG rod, a 0° incidence flat high reflector (HR), a polarizing beam-splitter cube (PB), a quarter wave plate (QWP), a quarter-wave voltage pulse-slicing Pockels cell (PC), and a 0° incidence high reflector with 5 m radius of curvature (R5). The input and output beams are separated by a Faraday rotator (FR) half wave plate (HWP) polarizing beam splitter (PB) combination.

Fig. 4
Fig. 4

(Color online) Photograph of the fiber launch, tandem isolator, and regenerative amplifier on the 30.5 - cm by 122 - cm breadboard. The beam path is drawn for reference.

Fig. 5
Fig. 5

(Color online) Schematic of the power amplifier. Two identical diode-pumped Nd:YAG amp heads are separated by a vacuum telescope that act to relay image the serrated aperture (SA) onto high reflector (M2), then onto high reflector (M4), back onto M2 and then onto a plane to the right of the right-most polarizing beam splitter (PB). A quartz rotator (QR) assists in birefringence compensation and a quarter wave plate (QWP) allows four-pass operation of the amplifier. A Faraday isolator (FI) protects the regenerative amplifier and a Faraday rotator (FR) half wave plate (HWP) combination separates the input and output beams.

Fig. 6
Fig. 6

(Color online) Photograph of the power amplifier. The vacuum telescope and diode-pumped amplifiers are outlined.

Fig. 7
Fig. 7

Amplifier output pulse shapes are shown as a function of FWHM pulse width. The pulse shape amplitudes are scaled to 1 and the pulse shapes are time shifted such that the 50% amplitude of the leading edge corresponds to time = 0.

Fig. 8
Fig. 8

(Color online) Oscillator pulse shapes that generate FIT amplifier pulses are shown as a function of pulse width.

Fig. 9
Fig. 9

(Color online) Regenerative amplifier pulse shapes that generate FIT amplifier pulses are shown as a function of pulse width.

Fig. 10
Fig. 10

(Color online) Images of the amplifier beam taken at an equivalent output relay plane are shown as a function of pulse width. The white reference circle is 5 mm in diameter. The “bulls-eye” pattern in the upper-right quadrant is a damage spot on the camera neutral density filter. The statistics are discussed in the section below.

Fig. 11
Fig. 11

(Color online) The 500 - ps pulse, as measured with a 45 - GHz photodetector into a sampling oscilloscope, is shown with a second-order super-Gaussian fit.

Fig. 12
Fig. 12

(Color online) Horizontal (x) and vertical (y) profiles through the 500 - ps beam centroid are shown. In addition, the 90% amplitude points of the fitted profiles are indicated by vertical dashed lines.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = A e 2 [ ( t t o ) 2 τ 2 ] n
f ( x , y ) = A e 2 [ ( x x o ) 2 a 2 + ( y y o ) 2 b 2 ] n

Metrics