Abstract

The orthogonal polarization simultaneous readout technique in a hybrid-multiplexed memory using angular multiplexing and polarization multiplexing is presented. Twenty holograms were hybrid multiplexed in a single LiNbO3 crystal with ten angular positions for angular multiplexing. In each angular position of the holographic memory, two images with orthogonal polarization are multiplexed in the same spatial location inside the LiNbO3 via polarization multiplexing. These two orthogonally polarized images can be reconstructed simultaneously with a linear polarization reading beam, but they can be separated with a polarization beam splitter, and accordingly each can be viewed independently. The exposure schedule for holographic storage using the proposed hybrid-multiplexing technique is derived.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  2. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, "Volume holographic data-storage at a real density of 250 gigapixels/in2," Opt. Lett. 26, 444-446 (2001).
    [CrossRef]
  3. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]
  4. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  5. F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
    [CrossRef]
  6. G. A. Rakuljic, V. Leyva, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume hologram," Opt. Lett. 17, 1471-1473 (1992).
    [CrossRef] [PubMed]
  7. C. C. Sun, M. S. Tsaur, B. Wang, W. G. Su, and A. E. T. Chiou, "Two-dimensional shifting tolerance of a volume-holographic optical correlator," Appl. Opt. 38, 4316-4324 (1999).
    [CrossRef]
  8. G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24, 811-813 (1999).
    [CrossRef]
  9. C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
    [CrossRef]
  10. W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
    [CrossRef]
  11. W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).
  12. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, "Polarization holography. 3: Some applications of polarization holographic recording," Appl. Opt. 24, 785-788 (1985).
    [CrossRef] [PubMed]
  13. W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. S. Chan, and J. Westerweel, "Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin," Opt. Lett. 29, 101-103 (2004).
    [CrossRef] [PubMed]
  14. E. S. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
    [CrossRef]
  15. F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
    [CrossRef] [PubMed]
  16. C. C. Sun, "A simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
    [CrossRef]

2004 (3)

2003 (3)

C. C. Sun, "A simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
[CrossRef]

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

2001 (2)

G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, "Volume holographic data-storage at a real density of 250 gigapixels/in2," Opt. Lett. 26, 444-446 (2001).
[CrossRef]

C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[CrossRef]

1999 (2)

1996 (1)

1992 (1)

1991 (2)

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

E. S. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

1985 (1)

Anderson, K.

Balberg, M.

Barbastathis, G.

Bhattacharya, N.

Bjornson, E.

Braat, J. J. M.

Brady, D. J.

Burr, G. W.

Caulfield, H. J.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Chan, V. S. S.

Chen, Y. M.

C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[CrossRef]

Chiou, A. E. T.

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

C. C. Sun, M. S. Tsaur, B. Wang, W. G. Su, and A. E. T. Chiou, "Two-dimensional shifting tolerance of a volume-holographic optical correlator," Appl. Opt. 38, 4316-4324 (1999).
[CrossRef]

Coufal, H.

Curtis, K.

Hesselink, L.

Hoffnagle, J. A.

Jefferson, C. M.

Johnson, K. M.

E. S. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Jurich, M.

Koek, W. D.

Kukhtarev, N.

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

Kwan, D.

Leyva, V.

Ma, S. H.

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

Macfarlane, R. M.

Maniloff, E. S.

E. S. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Mayers, A. W.

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

Mok, F. H.

Nikolova, L.

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
[CrossRef] [PubMed]

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Rajan, S.

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

Rakuljic, G. A.

Shelby, R. M.

Sincerbox, G.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Snyder, R.

Stoyanova, K.

Su, W. C.

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[CrossRef]

Su, W. G.

Sun, C. C.

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

C. C. Sun, "A simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
[CrossRef]

C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[CrossRef]

C. C. Sun, M. S. Tsaur, B. Wang, W. G. Su, and A. E. T. Chiou, "Two-dimensional shifting tolerance of a volume-holographic optical correlator," Appl. Opt. 38, 4316-4324 (1999).
[CrossRef]

Sundaram, P.

Takashima, Y.

Todorov, T.

Tomova, N.

Tsaur, M. S.

Wang, B.

Westerweel, J.

Wu, S.

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

Yariv, A.

Yu, F. T. S.

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

E. S. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991).
[CrossRef]

Opt. Commun. (1)

F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
[CrossRef]

Opt. Eng. (3)

C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[CrossRef]

W. C. Su, C. C. Sun, N. Kukhtarev, and A. E. T. Chiou, "Polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

C. C. Sun, "A simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
[CrossRef]

Opt. Lett. (6)

Other (2)

W. C. Su, S. H. Ma, C. C. Sun, A. E. T. Chiou, and N. Kukhtarev, "Volume holographic storage using polarization multiplexing," Proc. SPIE 5206, 118-124 (2003).

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup for recording a hybrid-multiplexed memory with angle and polarization multiplexing. M1–M4, mirrors; SF, spatial filter; L1 and L2, lenses; PBS1 and PBS2, polarizing beam splitters; HP1–HP3, half-wave plates. (b) Recording geometry of angle-multiplexed TM holograms. (c) Recording geometry of angle-multiplexed TE holograms.

Fig. 2
Fig. 2

Angular scan results of diffraction efficiencies for 20 hybrid-multiplexed holograms with 10 angular positions after scheduled exposure. (a) Angular scan results of diffraction efficiencies with a TM polarized reading beam. (b) Angular scan results of diffraction efficiencies with a TE polarized reading beam.

Fig. 3
Fig. 3

Polarization simultaneous readout results of the hybrid-multiplexed holographic memory.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

η = η sat [ 1 exp ( t τ w ) ] 2 ,
η = η exp ( 2 t τ e ) ,
η 2 N = η sat TE [ 1 exp ( t 2 N τ w TE ) ] 2 ,
t 2 N = τ w TE ln [ 1 1 η 2 N η sat TE ] .
η 2 N 1 = η sat TE [ 1 exp ( t 2 N 1 τ w TE ) ] 2 exp ( 2 t 2 N τ e TE TE ) ,
t 2 N 1 = τ w TE ln [ 1 1 η 2 N 1 η sat TE exp ( 2 t 2 N τ e TE TE ) ] .
t i = τ w TE ln [ 1 1 η i η sat TE exp ( 2 i + 1 2 N t i + 1 τ e TE TE ) ] ,
for   i = N + 1 , N + 2 ,   …   ,   2 N 1.
η N = η sat TM [ 1 exp ( t N τ w TM ) ] 2 exp ( 2 i = N 2 N t i + 1 τ e TM TE ) ,
t N = τ w TM ln [ 1 1 η N η sat TM exp ( 2 i = N 2 N t i + 1 τ e TM TE ) ] .
η i = η sat TM [ 1 exp ( t i τ w TM ) ] 2 exp ( 2 n = N + 1 2 N t n τ e TM TE ) × exp ( 2 i + 1 N t i + 1 τ e TM TM ) f o r i = 1 , 2 ,   …   ,   N 1 ,
t i = τ w TM ln [ 1 1 η i η sat TM exp ( 2 n = N + 1 2 N t n τ e TM TE ) exp ( 2 i + 1 N t i + 1 τ e TM TM ) ]
f o r i = 1 , 2 ,   …   ,   N 1 .
η 2 N η sat TE = η 2 N 1 η sat TE = = η N η sat TE = η N 1 η sat TM = = η 2 η sat TM
= η 1 η sat TM = 1 M 2 = 1 ( 2 N ) 2 .

Metrics