Abstract

It is demonstrated that with a proper choice of embedding material, the composite beam bending method constitutes an effective and reliable approach for tuning fiber Bragg gratings. A long-term stable device is presented with a dynamic range of 80nm, which exhibits insertion losses smaller than 0.28dB and small variations of the full width at half-maximum.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, "Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient," Opt. Lett. 19, 2027-2029 (1994).
    [CrossRef] [PubMed]
  2. T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).
  3. A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
    [CrossRef]
  4. R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
    [CrossRef]
  5. M. Wippich and K. L. Dessau, "Tunable lasers and fiber-Bragg-grating sensors," The Industrial Physicist, June/July, 24-27 (2003).
  6. Y.-G. Han, D. S. Moon, Y. Chung, and S. B. Lee, "Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method," Opt. Express 13, 6330-6335 (2005).
    [CrossRef] [PubMed]
  7. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, "Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings," Opt. Lett. 30, 2200-2202 (2005).
    [CrossRef] [PubMed]
  8. M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
    [CrossRef]
  9. G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Opt. Lett. 19, 1979-1981 (1994).
    [CrossRef] [PubMed]
  10. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high power Raman fiber laser based on broadband chirped fiber Bragg gratings," J. Lightwave Technol. 24, 5039-5043 (2006).
    [CrossRef]
  11. B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
    [CrossRef]
  12. H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
    [CrossRef]
  13. T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
    [CrossRef]
  14. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
    [CrossRef]
  15. C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
    [CrossRef]
  16. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
    [CrossRef]
  17. M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

2006 (1)

2005 (3)

2003 (4)

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

2002 (2)

C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
[CrossRef]

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

2001 (4)

T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
[CrossRef]

T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

1994 (2)

Ball, G. A.

Barton, J. S.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Bélanger, E.

Berghmans, F.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Bernier, M.

Blondel, M.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Borin, F.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Brichard, B.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Burnell, G.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
[CrossRef]

Chung, Y.

Dabarsyah, B.

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

de Barros, M. R. X.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Decréton, M.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Delchambre, A.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Déry, B.

Dessau, K. L.

M. Wippich and K. L. Dessau, "Tunable lasers and fiber-Bragg-grating sensors," The Industrial Physicist, June/July, 24-27 (2003).

Faucher, D.

Fernandez Fernandez, A.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
[CrossRef]

Goh, G. S.

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

Han, Y.-G.

Horiuchi, M. R.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Ibsen, M.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

Inui, T.

T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Jones, J. D. C.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Katoh, K.

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

Kawashima, H.

T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).

Khijwania, S. K.

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

Kikuchi, K.

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
[CrossRef]

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

Komukai, T.

T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Lauzon, J.

Lee, S. B.

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
[CrossRef]

Maier, R. R. J.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Martin, J.

McCulloch, S.

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Mégret, P.

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

Mizunami, T.

T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

Monteiro, H. C. L.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Moon, D. S.

Morey, W. W.

Nakasawa, M.

T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Oliveira, F. L.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Ouellette, F.

Peng, G. D.

H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
[CrossRef]

Richardson, D. J.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

Rocha, M. L.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Santos, M. A. D.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
[CrossRef]

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

Simoes, F. D.

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Tatehata, H.

T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).

Thibault, S.

Vallée, R.

Wippich, M.

M. Wippich and K. L. Dessau, "Tunable lasers and fiber-Bragg-grating sensors," The Industrial Physicist, June/July, 24-27 (2003).

Electron. Lett. (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fiber Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509-511 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

C. S. Goh, S. Y. Set, and K. Kikuchi, "Widely tunable optical filters based on fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 1306-1308 (2002).
[CrossRef]

B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 416-418 (2003).
[CrossRef]

M. Ibsen, S. Y. Set, G. S. Goh, and K. Kikuchi, "Broad-band continuously tunable all-fiber DFB lasers," IEEE Photon. Technol. Lett. 14, 21-23 (2002).
[CrossRef]

IEEE Phtoton. Technol. Lett. (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, "Thermal tuning of polymer optical fiber Bragg gratings," IEEE Phtoton. Technol. Lett. 13, 824-826 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Microwaves Optoelectronics (1)

M. L. Rocha, F. Borin, H. C. L. Monteiro, M. R. Horiuchi, M. R. X. de Barros, M. A. D. Santos, F. L. Oliveira, and F. D. Simoes, "Mechanical tuning of a fiber Bragg grating for optical networking applications," J. Microwaves Optoelectronics 4, 1-11 (2005).

Meas. Sci. Technol. (3)

T. Mizunami, H. Tatehata, and H. Kawashima, "High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using Teflon substrates," Meas. Sci. Technol. 12, 914-917 (2001).

A. Fernandez Fernandez, F. Berghmans, B. Brichard, P. Mégret, M. Decréton, M. Blondel, and A. Delchambre, "Multi-component force sensor based on multiplexed fiber Bragg grating strain sensors," Meas. Sci. Technol. 12, 810-813 (2001).
[CrossRef]

R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, "Dual-fiber Bragg grating sensor for barometric pressure measurement," Meas. Sci. Technol. 14, 2015-2020 (2003).
[CrossRef]

Opt. Commun. (1)

T. Inui, T. Komukai, and M. Nakasawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun. 190, 1-4 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

M. Wippich and K. L. Dessau, "Tunable lasers and fiber-Bragg-grating sensors," The Industrial Physicist, June/July, 24-27 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(Color online) Tuning curves (C, compression and T, traction) for different materials (fast drying glues). Diamond dotted curve is Lepage epoxy 5 min, square dotted curve is Tra-Con F112, triangle dotted curve is Tra-Con 813J01, and circle dotted curve is Tra-Con 2170T ( λ B = 1549.5 nm , d = 5 mm , and L = 15.3 cm ).

Fig. 3
Fig. 3

(Color online) (a) Solid line corresponds to the theoretical curve and the square dotted is the experimental results (C, compression and T, traction) with Surlyn 8940 as the flexible material ( λ B = 1554.24 nm , d = 4.5 mm , and L = 15.3 cm ). (b) Reflectivity curves of the FBG tuning device over 50 nm (C, compression and T, traction) with Surlyn 9950 as the flexible material ( λ B = 1549.5 nm , d = 4.5 mm , and L = 15.3 cm ).

Fig. 4
Fig. 4

(Color online) Insertion losses versus the normalized displacement for Surlyn 8940 ( λ B = 1554.37 nm , d = 4.0 mm , and L = 15.3 cm ).

Fig. 5
Fig. 5

(Color online) Bragg wavelength deviation for a fixed displacement versus time for Surlyn 8940 ( λ B = 1554.84 nm , d = 4.5 mm , and L = 15.3 cm ). Dotted empty squares, 10 nm ; dotted empty circles, 20 nm , and dotted empty diamonds, 30 nm in compression. Dotted full circles, 5 nm ; dotted full squares, 10 nm; and dotted full diamonds, 15 nm in traction.

Fig. 6
Fig. 6

(Color online) Longevity (tuning) curves for different materials. (a) Tra-Con F112 epoxy ( λ B = 1549.5 nm , d = 5 mm , and L = 15.3 cm ). Dotted circles correspond to 2 days after curing, dotted squares 34 days after curing, and dotted diamonds 45 days after curing. (b) Surlyn 9950 polymer ( λ B = 1554.15 nm , d = 4.5 mm , and L = 15.3 cm ). Dotted circles after 11 days, dotted squares 160 days, and dotted diamonds 263 days after the fabrication.

Tables (1)

Tables Icon

Table 1 Mechanical Properties of Epoxies and Common Plastics

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = [ ( 1 ( n e f f 2 2 ) [ p 12 ν ( p 11 + p 12 ) ] ) ε + ( a + d n e f f d t n e f f ) T ] λ B ,
Δ λ = ( 1 ρ e ) ε λ B 0.78 ε λ B .
Δ z L = [ 1 sin ( θ 2 ) ( θ 2 ) ] .
ε = d θ L ,
Δ λ = 0.78 d θ L λ B .

Metrics