Abstract

Asymmetric transverse-load characteristics and the polarization dependence of long-period fiber gratings (LPFGs) written by high-frequency CO2 laser pulses are investigated in detail. It is demonstrated that the resonant wavelength is dependent on the direction of the applied force and on the polarization state of the input light; however, the coupling strength is independent of these parameters. When a transverse load is applied along different orientations of the LPFG, the resonant wavelength may be shifted toward the longer wavelength, the shorter wavelength, or hardly shifted, whereas the absolute value of peak transmission attenuation is linearly decreased with an increase of the applied transverse load, with almost no sensitivity to the load direction. These unique transverse-load characteristics and the polarization dependence are due to the load-induced birefringence that leads to the rotation of optical principal axes in the LPFG.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
    [CrossRef]
  5. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
    [CrossRef]
  6. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
    [CrossRef]
  7. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
    [CrossRef]
  8. I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Opt. Lett. 24, 1263-1265 (1999).
    [CrossRef]
  9. C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159-1168 (2001).
    [CrossRef]
  10. C. Y. Lin and L. A. Wang, "A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating," IEEE Photon. Technol. Lett. 13, 332-334 (2001).
    [CrossRef]
  11. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25, 710-712 (2000).
    [CrossRef]
  12. J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002).
    [CrossRef]
  13. Y. P. Wang, J. P. Chen, and Y. J. Rao, "Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses," J. Opt. Soc. Am. B 22, 1167-1172 (2005).
    [CrossRef]
  14. Y. P. Wang and Y. J. Rao, "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sens. J. 5, 839-843 (2005).
    [CrossRef]
  15. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
    [CrossRef]
  16. H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett. 36, 1763-1764 (2000).
    [CrossRef]
  17. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
    [CrossRef]
  18. Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
    [CrossRef]
  19. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
    [CrossRef]
  20. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Residual stress relaxation in the core of optical fiber by CO2 laser irradiation," Opt. Lett. 26, 1657-1659 (2001).
    [CrossRef]
  21. J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
    [CrossRef]
  22. J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
    [CrossRef]
  23. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, "Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating," Opt. Lett. 28, 155-157 (2003).
    [CrossRef] [PubMed]

2006 (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

2005 (2)

Y. P. Wang and Y. J. Rao, "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sens. J. 5, 839-843 (2005).
[CrossRef]

Y. P. Wang, J. P. Chen, and Y. J. Rao, "Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses," J. Opt. Soc. Am. B 22, 1167-1172 (2005).
[CrossRef]

2003 (2)

2002 (1)

J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002).
[CrossRef]

2001 (4)

2000 (4)

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25, 710-712 (2000).
[CrossRef]

1999 (3)

I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Opt. Lett. 24, 1263-1265 (1999).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

1994 (1)

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Ahn, T. J.

Anemogiannis, E.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Bennion, I.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Bhatia, V.

V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Braiwish, M. I.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Calero, J.

J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
[CrossRef]

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Chen, J. P.

Chern, G. W.

Cho, J. Y.

J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002).
[CrossRef]

Chuang, S. L.

J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
[CrossRef]

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Chung, Y.

Chung, Y. J.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Dianov, E.

Digonnet, M. J. F.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Gaylord, T. K.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Glytsis, E. N.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Han, W. T.

Hwang, I. K.

Jin, W.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kim, B. H.

Kim, B. Y.

Kim, D. Y.

Kino, G. S.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B. H.

Lee, K. S.

J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lin, C. Y.

C. Y. Lin and L. A. Wang, "A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating," IEEE Photon. Technol. Lett. 13, 332-334 (2001).
[CrossRef]

C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159-1168 (2001).
[CrossRef]

Liu, Y.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

Murtha, J. P.

J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
[CrossRef]

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Oh, S. T.

Okhotnikov, O.

Paek, U. C.

Park, Y.

Patrick, H. J.

H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Peng, G.-D.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Pope, C.

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Rego, G.

Ryu, H. S.

Savin, S.

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Sulimov, V.

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

Wang, D. N.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Wang, L. A.

C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159-1168 (2001).
[CrossRef]

C. Y. Lin and L. A. Wang, "A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating," IEEE Photon. Technol. Lett. 13, 332-334 (2001).
[CrossRef]

Wang, Y. P.

Wang, Y.-P.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Williams, J. A. R.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Wu, S. P.

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

Yun, S. H.

Zhang, L.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Zhu, T.

Appl. Phys. Lett. (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006).
[CrossRef]

Electron. Lett. (4)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
[CrossRef]

C. Y. Lin and L. A. Wang, "A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating," IEEE Photon. Technol. Lett. 13, 332-334 (2001).
[CrossRef]

IEEE Sens. J. (1)

Y. P. Wang and Y. J. Rao, "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sens. J. 5, 839-843 (2005).
[CrossRef]

J. Lightwave Technol. (6)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994).
[CrossRef]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001).
[CrossRef]

C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159-1168 (2001).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002).
[CrossRef]

Opt. Lett. (5)

Smart Mater. Struct. (1)

J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for testing transverse-load characteristics and polarization dependence of the LPFGs. BS, broadband source; PC, polarization controller; OSA, optical spectral analyzer.

Fig. 2
Fig. 2

(Color online) (a) Resonant wavelength and (b) peak transmission attenuation of the CO 2 -laser-induced LPFG before and after a constant transverse load of 820.75   N   m 1 is applied along different orientations θ of the fiber section where the LPFG is located, as shown in (c), where the direction of CO 2 laser irradiation during LPFG fabrication is defined as the 0° orientation at the circle of the LPFG.

Fig. 3
Fig. 3

(Color online) (a) Resonant wavelength and (b) peak transmission attenuation of the CO 2 -laser-induced LPFG as functions of the transverse load applied along orientations 0°, 20°, 45°, 70°, and 90° of the LPFG.

Fig. 4
Fig. 4

(Color online) Transmission spectrum evolution of the CO 2 -laser-induced LPFG when transverse loads of 0, 196, 392, 588, and 784   N   m 1 are each applied along the 0° orientation of the LPFG.

Fig. 5
Fig. 5

(Color online) (a) Resonant wavelength and (b) peak transmission attenuation as functions of the SOP of the input light before and after a transverse load of 820.75   N   m 1 is applied along the 105° orientation of the LPFG. X coordinates in this figure and in Fig. 6 illustrate the accumulative angular adjustment of four fiber loops in the polarization controller, i.e., the adjustment of the SOP of the transmitted light.

Fig. 6
Fig. 6

(Color online) Polarization dependence of (a) resonant wavelength and (b) peak transmission attenuation after a transverse load of 820.75   N   m 1 is applied in turn along orientations 0°, 15°, 30°, 45°, 60°, 90°, 120°, 135°, and 150° of the LPFG.

Fig. 7
Fig. 7

Schematic diagram of the load sensitivities of the resonant wavelength when a transverse load is applied along different orientations of the CO 2 -laser-induced LPFG. The dashed ellipse illustrates the refractive index ellipse induced by the asymmetric index profile within the cross section of the LPFG, where the longer and shorter axes are defined as the fast and slow axes, respectively, and the direction of CO 2 laser irradiation is defined as the 0° orientation of the LPFG.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

tan Δ α = b d + Ψ ,
1 n f 2 = Φ + Ψ ,
1 n s 2 = Φ Ψ ,
Φ = a + c 2 = 1 2 [ 1 n f 2 + 1 n s 2 + ( p 1 + p 2 ) ( e x x + e y y ) + 2 p 2 e z z ] ,
Ψ = d 2 + b 2 ,
d = a c 2 = 1 2 [ 1 n f 2 1 n s 2 + ( p 1 p 2 ) ( e x x e y y ) cos 2 α ] ,
a = 1 n f 2 + Δ K f f ,     b = 1 2 Δ K s f ,     c = 1 n s 2 + Δ K s s ,
β f = 2 π λ n f ,
β s = 2 π λ n s .
β f = 2 π λ n f β f ,
β s = 2 π λ n s β s ,

Metrics