Abstract

A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
    [CrossRef]
  2. M. Takeda, W. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, "Frequency-multiplex Fourier-transform profilomertry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations," Appl. Opt. 36, 5347-5354 (1997).
    [CrossRef] [PubMed]
  3. G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
    [CrossRef]
  4. C. E. Towers, D. P. Towers, and J. D. C. Jones, "Optimum frequency selection in multifrequency interferometry," Opt. Lett. 28, 887-889 (2003).
    [CrossRef] [PubMed]
  5. X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
    [CrossRef]
  6. K.-P. Proll, J.-M. Nivet, C. Voland, and H. J. Tiziani, "Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry," Appl. Opt. 39, 6430-6435 (2000).
    [CrossRef]
  7. D. S. Mehta, S. K. Dubey, M. M. Hossain, and C. Shakher, "Simple multifrequency and phase-shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry," Appl. Opt. 44, 7515-7521 (2000).
    [CrossRef]
  8. M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000).
    [CrossRef]
  9. J. Xu, Principle, Design, and Applications of Acousto-optic Devices (Science Press, 1982), pp. 65-67.
  10. A. P. Goutzoulis, Design and Fabrication of Acousto-optic Devices (Marcel Dekker, 1994), pp. 43-44.
  11. G. Indebetouw, "Profile measurement using projection of running fringes," Appl. Opt. 17, 2930-2933 (1978).
    [CrossRef] [PubMed]

2005 (1)

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

2003 (1)

2001 (1)

G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
[CrossRef]

2000 (3)

1997 (1)

1995 (1)

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

1978 (1)

Atkinson, J. T.

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

Burton, D. R.

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

Dubey, S. K.

Feldkhum, D. L.

M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000).
[CrossRef]

Godall, A. J.

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, Design and Fabrication of Acousto-optic Devices (Marcel Dekker, 1994), pp. 43-44.

Gu, W.

Hossain, M. M.

Indebetouw, G.

Jones, J. D. C.

Kavalauskas, M. P.

G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
[CrossRef]

Kinoshita, M.

Lalor, M. J.

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

Li, E.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Mehta, D. S.

Mermeistein, M. S.

M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000).
[CrossRef]

Nivet, J.-M.

Peng, X.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Proll, K.-P.

Qiu, W.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Shakher, C.

Shirley, L. G.

G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
[CrossRef]

M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000).
[CrossRef]

Swanson, G. J.

G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
[CrossRef]

Takahashi, Y.

Takai, H.

Takeda, M.

Tian, J.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Tiziani, H. J.

Towers, C. E.

Towers, D. P.

Voland, C.

Wei, L.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Xu, J.

J. Xu, Principle, Design, and Applications of Acousto-optic Devices (Science Press, 1982), pp. 65-67.

Zhang, D.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Zhang, P.

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Appl. Opt. (4)

Opt. Eng. (1)

M. S. Mermeistein, D. L. Feldkhum, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

D. R. Burton, A. J. Godall, J. T. Atkinson, and M. J. Lalor, "The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry," Opt. Lasers Eng. 23, 245-257 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

G. J. Swanson, M. P. Kavalauskas, and L. G. Shirley, "High-precision surface profiling with broadband accordion fringe interlerometry," Proc. SPIE 4189, 161-169 (2001).
[CrossRef]

X. Peng, J. Tian, P. Zhang, L. Wei, W. Qiu, E. Li, and D. Zhang, "Dynamic 3-D profilometry with dual-acousto-optic fringe projection," Proc. SPIE 5638, 456-463 (2005).
[CrossRef]

Other (2)

J. Xu, Principle, Design, and Applications of Acousto-optic Devices (Science Press, 1982), pp. 65-67.

A. P. Goutzoulis, Design and Fabrication of Acousto-optic Devices (Marcel Dekker, 1994), pp. 43-44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Block diagram of AGFP system.

Fig. 2
Fig. 2

(Color online) Block diagram of the electronics part.

Fig. 3
Fig. 3

Beating wave in AO crystal calculated by Eq. (5).

Fig. 4
Fig. 4

Power wave form in AO crystal.

Fig. 5
Fig. 5

Emulation result of acousto-optic diffraction efficiency for acoustic power, which implies that a large ultrasonic wave is no longer linearly related.

Fig. 6
Fig. 6

Results of the AOD diffraction efficiency η compared with different P a .

Fig. 7
Fig. 7

Schematic of adjusting the fringe spacing.

Fig. 8
Fig. 8

Schematic of the beat frequency acoustic grating being illuminated periodically at locked phase values by modulated laser.

Fig. 9
Fig. 9

Setting the frequency of the beating wave and the laser modulation frequencies to have a difference of Δ f , the laser can illuminate the acoustic grating periods one-by-one with a slight phase offset that gradually accumulates to 2 π during the time of 1 / Δ f . Projected image of every laser pulse forms continuous running fringes.

Fig. 10
Fig. 10

(Color online) (a) AGFP experiment setup and (b) the signals on oscilloscope screen.

Fig. 11
Fig. 11

Fringes with 1, 2, and 4   MHz periods and 0, π / 2 , π, 3 π / 2 phases projected on part of a mouse. Acousto-optic diffraction efficiency is less than 50%. Images are obtained by a CCD ( 768 × 576 , 8   bit ) with 50   mm lens.

Fig. 12
Fig. 12

Unwrapped phase map of the target.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η = sin 2 ( π λ 0 M 2 L P a 2 H ) ,
P a = 1 2 ρ V 3 | S | 2 HL ,
P a = γ | E | 2 .
η sin 2 ( π λ 0 M 2 L γ | E | 2 2 H ) .
E m cos ( 2 π f m t ) E c cos ( 2 π f c t ) = E m E c 2 { cos [ 2 π ( f c + f m ) t ] + cos [ 2 π ( f c f m ) t ] } .
I ( x , y , z , ϕ ) = 2 f m t t + Δ t η ( x , y , t ) I 0 ( x , y , z , ϕ , t ) d t ,
η sin 2 ( π λ 0 M 2 L γ | E | 2 2 H ) π 2 M 2 L 2 λ 0 2 H P a .
f r u n n i n g = Δ f .

Metrics