Abstract

Selective fluorescence excitation of specific molecular species is demonstrated by using coherent control of two-photon excitation with supercontinuum pulses generated with a microstructure fiber. Pulse shaping prior to pulse propagation through the fiber is controlled by a self-learning optimization loop so that the highest fluorescence signal contrast between two fluorescent proteins is obtainable. The self-learning optimization loop successfully controls both the optical nonlinarity of the microstructure fiber and the two-photon excitation of the fluorescent proteins.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 929-1960 (2000).
    [CrossRef]
  2. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  3. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  4. I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701.
    [PubMed]
  5. J. P. Ogilvie, K. J. Kubarych, A. Alexandrou, and M. Joffre, "Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control," Opt. Lett. 30, 911-913 (2005).
    [CrossRef] [PubMed]
  6. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  7. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
    [CrossRef]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  9. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
    [CrossRef]
  10. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  11. H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-42300 (2004).
    [CrossRef]
  12. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering spectroscopy," Opt. Lett. 29, 2701-2703 (2004).
    [CrossRef] [PubMed]
  13. S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
    [CrossRef]
  14. B. von Vacano, W. Wohlleben, and M. Motzkus, "Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microscopy," Opt. Lett. 31, 413-415 (2006).
    [CrossRef] [PubMed]
  15. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, "Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper," J. Opt. Soc. Am. B 19, 2795-2802 (2002).
    [CrossRef]
  16. T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, "Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile," Appl. Opt. 44, 1092-1098 (2005).
    [CrossRef] [PubMed]
  17. M. Tianprateep, J. Tada, and F. Kannari, "Influence of polarization and pulse shape of femtosecond intial laser pulses on spectral broadening in microstructure fibers," Opt. Rev. 12, 179-189 (2005).
    [CrossRef]
  18. S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
    [CrossRef] [PubMed]
  19. D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
    [CrossRef]
  20. M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
    [CrossRef]
  21. M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
    [CrossRef]
  22. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fiber," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  23. T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
    [CrossRef]

2006 (2)

B. von Vacano, W. Wohlleben, and M. Motzkus, "Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microscopy," Opt. Lett. 31, 413-415 (2006).
[CrossRef] [PubMed]

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

2005 (3)

2004 (5)

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
[CrossRef] [PubMed]

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-42300 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering spectroscopy," Opt. Lett. 29, 2701-2703 (2004).
[CrossRef] [PubMed]

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

2003 (4)

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber light source," Opt. Lett. 28, 1123-1125 (2003).
[CrossRef] [PubMed]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

2002 (5)

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, "Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper," J. Opt. Soc. Am. B 19, 2795-2802 (2002).
[CrossRef]

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fiber," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

2000 (2)

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Akimov, D. A.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

Alexandrou, A.

Alfimov, M. V.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Chichkov, B.

Cicerone, M. T.

Cruz, J. M. D.

Dantus, M.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701.
[PubMed]

Dudley, J.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Eohlleben, W.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Fushimi, S.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

Gaeta, A. L.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Giessen, H.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Hamaguchi, H.

H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-42300 (2004).
[CrossRef]

Hilligsoe, K. M.

Ivanov, A. A.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

Joffre, M.

Johnson, E.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Kannari, F.

T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, "Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile," Appl. Opt. 44, 1092-1098 (2005).
[CrossRef] [PubMed]

M. Tianprateep, J. Tada, and F. Kannari, "Influence of polarization and pulse shape of femtosecond intial laser pulses on spectral broadening in microstructure fibers," Opt. Rev. 12, 179-189 (2005).
[CrossRef]

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, "Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper," J. Opt. Soc. Am. B 19, 2795-2802 (2002).
[CrossRef]

Kano, H.

H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-42300 (2004).
[CrossRef]

Kawano, H.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Kee, T. W.

Keiding, S. R.

Kibler, B.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Koch, J.

Konorov, S. O.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

Korte, F.

Kubarych, K. J.

Larsen, J. J.

Lozovoy, V. V.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701.
[PubMed]

Midorikawa, K.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Miyawaki, A.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Mizuno, H.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Motzkus, M.

B. von Vacano, W. Wohlleben, and M. Motzkus, "Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microscopy," Opt. Lett. 31, 413-415 (2006).
[CrossRef] [PubMed]

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Nabekawa, Y.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Nagarajan, V.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Ogilvie, J. P.

Ohno, K.

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

Oishi, Y.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Parson, W.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Pastirk, I.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701.
[PubMed]

Paulsen, H. N.

Ranka, J. K.

Reitze, D. H.

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
[CrossRef] [PubMed]

Sato, M.

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

Schellenberg, P.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Shida, Y.

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

Shiozawa, M.

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

Stentz, A. J.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Suda, A.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

Suzuki, M.

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

Tada, J.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of polarization and pulse shape of femtosecond intial laser pulses on spectral broadening in microstructure fibers," Opt. Rev. 12, 179-189 (2005).
[CrossRef]

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

Tanabe, H.

Tanabe, T.

T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, "Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile," Appl. Opt. 44, 1092-1098 (2005).
[CrossRef] [PubMed]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, "Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper," J. Opt. Soc. Am. B 19, 2795-2802 (2002).
[CrossRef]

Teipel, J.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Teramura, Y.

Thogersen, J.

Tianprateep, M.

M. Tianprateep, J. Tada, and F. Kannari, "Influence of polarization and pulse shape of femtosecond intial laser pulses on spectral broadening in microstructure fibers," Opt. Rev. 12, 179-189 (2005).
[CrossRef]

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

Türke, D.

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

von Vacano, B.

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701.
[PubMed]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 929-1960 (2000).
[CrossRef]

Windeler, R.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

Windeler, R. S.

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

Wohlleben, W.

Xu, S.

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
[CrossRef] [PubMed]

Yamazaki, T.

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

Zhelyikov, A. M.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zhelyikov, "Microstructure fibers as frequency tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy," Appl. Phys. B 78, 565-567 (2004).
[CrossRef]

D. Türke, W. Eohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 47-42 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-42300 (2004).
[CrossRef]

Biochem. Biophys. Res. Comunn. (1)

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Comunn. 311, 592-596 (2003).
[CrossRef]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. I. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (3)

M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique," Jpn. J. Appl. Phys. 43, 8059-8063 (2004).
[CrossRef]

M. Sato, M. Suzuki, M. Shiozawa, T. Tanabe, K. Ohno, and F. Kannari, "Adaptive pulse shaping of femtosecond laser pulses in amplitude and phase through a single-mode fiber by referring to frequency-resolved optical gating patterns," Jpn. J. Appl. Phys. 41, 3704-3709 (2002).
[CrossRef]

T. Yamazaki, T. Tanabe, F. Kannari, Y. Shida, and S. Fushimi, "Fiber delivery of ultrashort optical pulses preshaped on the basis of a backward propagation solver," Jpn. J. Appl. Phys. 42, 7313-7317 (2003).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express. 12, 4731-4741 (2004).
[CrossRef] [PubMed]

Opt. Lett. (6)

Opt. Rev. (1)

M. Tianprateep, J. Tada, and F. Kannari, "Influence of polarization and pulse shape of femtosecond intial laser pulses on spectral broadening in microstructure fibers," Opt. Rev. 12, 179-189 (2005).
[CrossRef]

Rev. Sci. Instrum. (2)

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, "A compact versatile femtosecond spectrometer," Rev. Sci. Instrum. 73, 4145-4149 (2002).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 929-1960 (2000).
[CrossRef]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic of experimental setup. (a) XFROG setup to characterize supercontinuum pulses. (b) Output of a fiber-coupled spectrometer is sent to a PC to enhance a specific spectral band of supercontinuum pulse with self-learning adaptive control. (c) Two-photon excitation of chromophore. The fluorescence power is sent to the PC to adaptively optimize the excitation pulse shape.

Fig. 2
Fig. 2

(Color online) Adaptively shaped supercontinuum spectra plotted in the linear scale. The marked spectral band of each spectrum was targeted to be enhanced by shaping the femtosecond laser pulse launched into the microstructure fiber. The supercontinuum spectrum obtained by the unshaped input laser pulse with a null spectral phase mask is shown in the top. The average power of the supercontinuum pulses is 1.5   mW .

Fig. 3
Fig. 3

(Color online) Plots of the fraction of spectral powers concentrated into the various targeted spectral bands by adaptive pulse shaping. The background spectrum is the supercontinuum spectrum (linear scale) obtained by the FTL laser pulse. The average power of the supercontinuum pulses is 6.5   mW .

Fig. 4
Fig. 4

(a) Supercontinuum spectrum obtained with the FTL pulse. The average power of the supercontinuum pulses is 15   mW . (b) Optimized phase modulation at SLM to obtain a flat supercontinuum spectrum. (c) Optimized flat supercontinuum spectrum plotted in the linear scale. (d) Same spectrum as that of (c) but plotted in the logarithm scale.

Fig. 5
Fig. 5

(a) One-photon absorption spectrum of laser dye molecules of BBQ (dotted curve), PBBO (gray solid curve) and Coumarine 450 (black solid curve). Comparisons of supercontinuum spectra between the initial pulse (black solid curve) and the optimized (gray solid curve) pulse for (b) BBQ, (c) PBBO, and (d) Coumarine 450. Initial pulses were adjusted only with their secondary dispersion so that the highest fluorescence was obtainable.

Fig. 6
Fig. 6

XFROG traces for the supercontinuum pulse obtained with (a) before and (b) after the adaptive control done for a PBBO dye solution. The averaged supercontinuum power is 15   mW .

Fig. 7
Fig. 7

Dependence of fluorescence intensity up on the secondary dispersion of the launched femtosecond laser pulse for EGFP fluorescent protein (black solid curve) and ECFP fluorescent protein (gray solid curve).

Fig. 8
Fig. 8

Results of adaptive control of the supercontinuum spectrum so that the highest fluorescence intensity ratio is obtainable. (a) Evolution of fluorescence ration EGFP∕ECFP during adaptive control. (b) Evolution of fluorescence intensity of EGFP (black solid curve) and ECFP (gray solid curve). (c) Evolution of fluorescence ration ECFP∕EGFP during adaptive control. (d) Evolution of fluorescence intensity of EGFP (black solid curve) and ECFP (gray solid curve).

Fig. 9
Fig. 9

Optimized supercontinuum spectra to attain the highest EGFP∕ECFP fluorescence intensity ratio (black solid curve) and to attain the highest ECFP∕EGFP fluorescence intensity ratio (gray solid curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β ( ω ) = 1 2 ! β 2 ( ω ω 0 ) 2 + 1 3 ! β 3 ( ω ω 0 ) 3 + 1 4 ! β 4 ( ω ω 0 ) 4 + 1 5 ! β 5 ( ω ω 0 ) 5 .

Metrics