Abstract

We describe experimental results with a diode-pumped, passively Q-switched extracavity second- and third-harmonic generation. Cr:YAG is used as a saturable absorber for pulse generation. Taking into account the thermal effects of Nd:YAG at high incident pump power, we use a short plane-to-plane cavity configuration to take advantage of the maximum pump power and obtain the compactness structure. At the same time, we use the type-I critical phase-matched lithium triborate crystal to generate light at 532nm and mix the residual fundamental at 1064 nm and the second-harmonic wave at 532nm in the type-II critical phase-matched lithium triborate crystal for UV light generation at 355nm. A third-harmonic-generation output power of 1.32  W is achieved at the incident pump power of 27.5  W, corresponding to an optical-to-optical efficiency of 4.8%. The instability of the UV laser power is less than 5% for 4 h.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).
  2. J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
    [CrossRef]
  3. A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
    [CrossRef]
  4. L. Goldberg and D. A. V. Kliner, "Deep-UV generation by frequency quadrupling of a high-power GaALAS semiconductor laser," Opt. Lett. 20, 1145-1147 (1995).
  5. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, "20 W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser," Opt. Lett. 25, 58-60 (2000).
  6. C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
    [CrossRef]
  7. E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
    [CrossRef]
  8. S. Spiekermann and M. Bode, "Ultraviolet single-frequency pulses with high average power using frequency-converted passively Q-switched quasimonolithic Nd:yttrium-aluminum-garnet ring lasers," Appl. Phys. Lett. 79, 458-460 (2001).
    [CrossRef]
  9. F. Druon and F. Balembois, "High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multi-pass amplifier," Opt. Lett. 24, 499-501 (1999).
  10. J. Wormhoudt and J. H. Shorter, "Diode-pumped 214.8-nm Nd:YAG Cr 4:YAG microchip laser system for the detection of NO," Appl. Opt. 39, 4418-4424 (2000).
  11. R. S. Craxton, "Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation," Opt. Commun. 34, 474-478 (1980).
    [CrossRef]
  12. J. Knittel and A. H. Kung, "39.5% conversion of low-power Q-switched Nd:YAG laser radiation to 266 nm by use of a resonant ring cavity," Opt. Lett. 22, 366-368 (1997).
  13. A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
    [CrossRef]
  14. L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
    [CrossRef]
  15. L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," in Proc. SPIE 2379, 235-244 (1995).
    [CrossRef]
  16. Y.-F. Chen and S. W. Tsai, "Diode-pumped Q-switched Nd:YVO4 yellow laser with intra-cavity sum-frequency mixing," Opt. Lett. 27, 397-399 (2002).

2006 (1)

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

2002 (4)

J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
[CrossRef]

C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
[CrossRef]

L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
[CrossRef]

Y.-F. Chen and S. W. Tsai, "Diode-pumped Q-switched Nd:YVO4 yellow laser with intra-cavity sum-frequency mixing," Opt. Lett. 27, 397-399 (2002).

2001 (1)

S. Spiekermann and M. Bode, "Ultraviolet single-frequency pulses with high average power using frequency-converted passively Q-switched quasimonolithic Nd:yttrium-aluminum-garnet ring lasers," Appl. Phys. Lett. 79, 458-460 (2001).
[CrossRef]

2000 (2)

1999 (2)

F. Druon and F. Balembois, "High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multi-pass amplifier," Opt. Lett. 24, 499-501 (1999).

E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
[CrossRef]

1998 (2)

A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
[CrossRef]

A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
[CrossRef]

1997 (1)

1995 (2)

L. Goldberg and D. A. V. Kliner, "Deep-UV generation by frequency quadrupling of a high-power GaALAS semiconductor laser," Opt. Lett. 20, 1145-1147 (1995).

L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," in Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

1980 (1)

R. S. Craxton, "Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation," Opt. Commun. 34, 474-478 (1980).
[CrossRef]

Agnesi, A.

A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
[CrossRef]

Balembois, F.

Barthelemy, A.

E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
[CrossRef]

Bode, M.

S. Spiekermann and M. Bode, "Ultraviolet single-frequency pulses with high average power using frequency-converted passively Q-switched quasimonolithic Nd:yttrium-aluminum-garnet ring lasers," Appl. Phys. Lett. 79, 458-460 (2001).
[CrossRef]

Chang, L. B.

L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
[CrossRef]

Chen, P.-J.

A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
[CrossRef]

Chen, Y.-F.

Couderc, V.

E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
[CrossRef]

Craxton, R. S.

R. S. Craxton, "Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation," Opt. Commun. 34, 474-478 (1980).
[CrossRef]

Dell'Acqua, S.

A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
[CrossRef]

Druon, F.

Du, C.

C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
[CrossRef]

Dudley, D. R.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Fujikawa, S.

Goldberg, L.

Halliburton, L. E.

L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," in Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Hicks, A. V.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Hodgson, N.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Kliner, D. A. V.

Knittel, J.

Kojima, T.

Konno, S.

Kung, A. H.

L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
[CrossRef]

A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
[CrossRef]

J. Knittel and A. H. Kung, "39.5% conversion of low-power Q-switched Nd:YAG laser radiation to 266 nm by use of a resonant ring cavity," Opt. Lett. 22, 366-368 (1997).

Lee, Jr-i

A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
[CrossRef]

Li, X.

J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
[CrossRef]

Mori, Y.

Ning, J.

J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
[CrossRef]

Okada, Y.

Pang, H. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Piccinini, E.

A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
[CrossRef]

Roisse, E.

E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
[CrossRef]

Sasaki, T.

Scripsick, M. P.

L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," in Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Shorter, J. H.

Spiekermann, S.

S. Spiekermann and M. Bode, "Ultraviolet single-frequency pulses with high average power using frequency-converted passively Q-switched quasimonolithic Nd:yttrium-aluminum-garnet ring lasers," Appl. Phys. Lett. 79, 458-460 (2001).
[CrossRef]

Tanaka, M.

Tsai, S. W.

Wang, C. X.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Wang, G. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

Wang, S. C.

L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
[CrossRef]

Wang, Z.

C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
[CrossRef]

Wormhoudt, J.

Xu, G.

C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
[CrossRef]

Yasui, K.

Yoshizawa, K.

Zhan, Y.

J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Roisse, V. Couderc, and A. Barthelemy, "Intracavity frequency-tripling of actively mode-locked diode-pumped Nd:YAG laser," Appl. Phys. B 69, 89-91 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

S. Spiekermann and M. Bode, "Ultraviolet single-frequency pulses with high average power using frequency-converted passively Q-switched quasimonolithic Nd:yttrium-aluminum-garnet ring lasers," Appl. Phys. Lett. 79, 458-460 (2001).
[CrossRef]

A. H. Kung, Jr-i Lee, and P.-J. Chen, "An efficient all-solid-state ultraviolet source," Appl. Phys. Lett. 72, 1542-1544 (1998).
[CrossRef]

IEEE J. Quantum Electron (1)

A. Agnesi, S. Dell'Acqua, and E. Piccinini, "Efficient wavelength conversion with high power passively Q-switched diode-pumped neodymium lasers," IEEE J. Quantum Electron 34, 1480-1484 (1998).
[CrossRef]

Opt. Commun. (2)

R. S. Craxton, "Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation," Opt. Commun. 34, 474-478 (1980).
[CrossRef]

L. B. Chang, S. C. Wang, and A. H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002).
[CrossRef]

Opt. Laser Technol. (1)

C. Du, Z. Wang, and G. Xu, "Diode-end-pumped solid-state ultraviolet laser based on intra-cavity third-harmonic generation of 1.06 μm in YCa4O(BO3)3 crystal," Opt. Laser Technol. 34, 695-698 (2002).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (3)

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, "High power Q-switched TEM00 mode diode-pumped solid state lasers with >30 W output power at 355 nm," in Proc. SPIE 6100, 335-348 (2006).

J. Ning, X. Li, and Y. Zhan, "All solid-state Q-switching ultraviolet light Nd:YAG laser," in Proc. SPIE 4914, 21-24 (2002).
[CrossRef]

L. E. Halliburton and M. P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," in Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

(Color online) Schematic of polarization matching in the frequency conversion.

Fig. 3
Fig. 3

(Color online) High-average power output at the harmonic wave versus the fundamental power.

Fig. 4
Fig. 4

(Color online) High-repetition rates output at harmonic wave versus the fundamental power.

Fig. 5
Fig. 5

(Color online) Repetition rates versus the pump power.

Fig. 6
Fig. 6

(Color online) Pulse width versus the pump power.

Fig. 7
Fig. 7

(Color online) Typical pulse shape varied with time.

Fig. 8
Fig. 8

(Color online) Typical pulse sequences.

Fig. 9
Fig. 9

(Color online) Beam waist versus the absorbed pump power at different cavity lengths.

Fig. 10
Fig. 10

(Color online) Beam-waist size versus the cavity length at a different absorbed pump power.

Tables (1)

Tables Icon

Table 1 Optical Parameters of Light at 355 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 f th = ξ P abs 4 π K c ω p 2 [ d n 0 / d T + ( n 0 1 ) α T ] ,
ω ( f th ) = ( λ π l 0 ( f th l 0 ) ) 1 / 2 .
ω ( p ) = ( λ π l 0 ( 5.67 P a b s l 0 ) ) 1 / 2 .

Metrics