Abstract

A four-element hydrophone array system using a fiber Bragg grating laser system is described. The demodulation technique for the array combines a 3×3 coupler-based interferometer and three wavelength division multiplexers (WDMs). It is believed to be a new passive approach to use a WDM and a unique arithmetic method. The operational frequency limit depends only on the frequency of its electronic portion. The designed system has achieved a minimum of 7.2×107pm/Hz detectable wavelength perturbation for frequencies that are greater than 200  Hz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
    [CrossRef]
  2. P. Nash, "Review of interferometric optical fiber hydrophone technology," IEE Proc. Radar Sonar Navig. 143, 204-209 (1996).
    [CrossRef]
  3. N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
    [CrossRef]
  4. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
    [CrossRef]
  5. A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
    [CrossRef]
  6. K. P. Koo and A. D. Kersy, "Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
    [CrossRef]
  7. D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).
  8. M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
    [CrossRef]
  9. M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
    [CrossRef]
  10. G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with 3 × 3 coupler and a scanning filter," J. Lightwave Technol. 18, 1101-1105 (2000).
    [CrossRef]
  11. D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

2002

M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
[CrossRef]

2000

1999

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
[CrossRef]

1998

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

1996

P. Nash, "Review of interferometric optical fiber hydrophone technology," IEE Proc. Radar Sonar Navig. 143, 204-209 (1996).
[CrossRef]

1995

K. P. Koo and A. D. Kersy, "Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

1993

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

1992

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

1991

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

1982

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Alavie, A. T.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

Althouse, B. L.

Bennion, I.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Brown, D. A.

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

Bucaro, J. A.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Bucholtz, F.

M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
[CrossRef]

Cameron, C. B.

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

Chang, C. C.

G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with 3 × 3 coupler and a scanning filter," J. Lightwave Technol. 18, 1101-1105 (2000).
[CrossRef]

M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
[CrossRef]

Cole, J. H.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Dandridge, A.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Gardner, D. L.

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

Garrett, S. L.

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

Giallorenii, T. G.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Hill, D. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Imamura, K.

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

Jackson, D. A.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Johnson, G. A.

G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with 3 × 3 coupler and a scanning filter," J. Lightwave Technol. 18, 1101-1105 (2000).
[CrossRef]

M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
[CrossRef]

Karr, S. E.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

Keolian, R. M.

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Kersy, A. D.

K. P. Koo and A. D. Kersy, "Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersy, "Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

Measures, R. M.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Nash, P.

P. Nash, "Review of interferometric optical fiber hydrophone technology," IEE Proc. Radar Sonar Navig. 143, 204-209 (1996).
[CrossRef]

Nash, P. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

O'Neill, S. F.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Othonos, A.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

Priest, R. G.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Seaver, M.

M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
[CrossRef]

Sigel, G. H.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

Takahashi, N.

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

Takahashi, S.

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

Tetsumura, K.

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

Todd, M. D.

M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
[CrossRef]

G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with 3 × 3 coupler and a scanning filter," J. Lightwave Technol. 18, 1101-1105 (2000).
[CrossRef]

M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
[CrossRef]

Webb, D. J.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Zhang, L.

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Electron. Lett.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber-grating-based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

M. D. Todd, G. A. Johnson, and C. C. Chang, "Passive, light intensity-independent interferometric method for fiber Bragg grating interrogation," Electron. Lett. 35, 1970-1971 (1999).
[CrossRef]

M. D. Todd, M. Seaver, and F. Bucholtz, "Improved operationally passive interferometric demodulation mathod using 3 × 3 coupler," Electron. Lett. 38, 784-786 (2002).
[CrossRef]

IEE Proc. Radar Sonar Navig.

P. Nash, "Review of interferometric optical fiber hydrophone technology," IEE Proc. Radar Sonar Navig. 143, 204-209 (1996).
[CrossRef]

IEEE J. Quantum Electron.

T. G. Giallorenii, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. 18, 626-665 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, "A multiplexed Bragg grating fiber laser system," IEEE Photon. Technol. Lett. 5, 1112-1114 (1993).
[CrossRef]

J. Lightwave Technol.

K. P. Koo and A. D. Kersy, "Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, "Fiber Bragg grating interrogation and multiplexing with 3 × 3 coupler and a scanning filter," J. Lightwave Technol. 18, 1101-1105 (2000).
[CrossRef]

Proc. SPIE

N. Takahashi, K. Tetsumura, K. Imamura, and S. Takahashi, "Fiber-Bragg-grating WDM underwater acoustic sensor with directivity," in Proc. SPIE 3541, 18-26 (1998).
[CrossRef]

Other

D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, "A symmetric 3 × 3 coupler based demodulator for fiber optic interferometric sensors," in Proc. SPIE 1584, 328-335 (1991).

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O'Neill, I. Bennion, and L. Zhang, "A fiber laser hydrophone array," in Proc. SPIE 3860, 55-66 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Multiplexing system for four-element FBG-laser hydrophone array.

Fig. 2
Fig. 2

Demodulation principle.

Fig. 3
Fig. 3

(Color online) Software demodulator.

Fig. 4
Fig. 4

(Color online) The transmission spectra of WDM.

Fig. 5
Fig. 5

(Color online) Spectra of four lasers array.

Fig. 6
Fig. 6

(Color online) Three interferometric signals in the four channels when modulation is applied to one beam of interferometer.

Fig. 7
Fig. 7

(Color online) Demodulated signals in the four channels when modulation is applied to one beam of interferometer.

Fig. 8
Fig. 8

(Color online) Three interferometric signals in the four channels when the four FBG lasers are plugged in a water pool.

Fig. 9
Fig. 9

(Color online) Demodulated signals in the four channels when the four FBG lasers are plugged in the water pool.

Fig. 10
Fig. 10

(Color online) Spectra of the four received acoustic signals when the four FBG lasers are plugged in the water pool.

Fig. 11
Fig. 11

Experimental results when examining the channel separation. Only the 1551   nm FBG laser was connected to the system. (a) Demodulated signal and three interferometric signals in the 1550   nm channel, (b) demodulated signal and three interferometric signals in the 1540   nm channel.

Fig. 12
Fig. 12

Noise floor measurement.

Equations (125)

Equations on this page are rendered with MathJax. Learn more.

3 × 3
7.2 × 10 7 pm / Hz
200   Hz
0.2   nm
12   mm
1550   nm
3 × 3
3 × 3
3 × 3
2 × 2
2 × 2
3 × 3
980   nm
40   nm
1565   nm
1560   nm
980   nm / 1550   nm
100   m
1560   nm
1 3
ϕ ˙ ( t )
ϕ ˙ ( t )
ϕ ˙ ( t )
( a , b , c )
ϕ ˙ ( t )
ϕ ( t )
v ( t )
v ( t ) = 3 A d A M A S A R A N A D ϕ ( t ) .
A d
A M
A S
A R
A N
A D
v ( t ) = 3 ϕ ( t )
ϕ ( t )
v ( t )
v ( t )
0.8   nm
1560   nm
20   dB
3   dB
5   nm
19.9 dB / m
1530   nm
30   mm
980   nm
980   nm
130   mW
42   dBm
( 0.01   nm )
10   km
2 .4 × 10 4   pm
100   kHz
70   kHz
100   m
1 .65 × 10 2   pm
10 6   rad
2 .62 × 10 7
4.35   rad
4   m × 5   m × 4   m
1   m
50   m
1480   nm
4 .05   kHz
1530   nm
1540   nm
1550   nm
1560   nm
0 .851   rad
1530   nm
1 .204   rad
1540   nm
1 .439   rad
1550   nm
0 .109   rad
1560   nm
100   m
2 .2 × 10 3   pm
1530   nm
3.1 × 10 3   pm
1540   nm
3 .8 × 10 3   pm
1550   nm
0 .49 × 10 3   pm
1560   nm
1551   nm
1551   nm
200   Hz
50   KHz
1550   nm
1540   nm
1550   nm
1540   nm
1560   nm
1540   nm
10   nm
3   dB
± 2   nm
± 100   ° C
± 1   nm
10   pm / ° C
3   dB
2   nm
1   nm
10   KHz
150   kHz
1   MHz
1550   nm
0 .087   rad
2 .28 × 10 4
OPD=100   m
1   kHz
50   dB
7 .2 × 10 7 pm / Hz
200   Hz
6 × 10 7 n ε / Hz
200   Hz
3 × 3
150   kHz
7 .2 × 10 7 pm / Hz
200   Hz
1551   nm
1550   nm
1540   nm

Metrics